
Deep Linguistic Processing of Portuguese
Noun Phrases

Francisco Nuno Quintiliano Mendonça Carapeto Costa

DI–FCUL TR–07–34

November 2007

Departamento de Informática
Faculdade de Ciências da Universidade de Lisboa

Campo Grande, 1749–016 Lisboa
Portugal

Technical reports are available at http://www.di.fc.ul.pt/tech-reports. The files are stored in PDF,
with the report number as filename. Alternatively, reports are available by post from the
above address.

UNIVERSIDADE DE LISBOA
FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

Deep Linguistic Processing of Portuguese Noun Phrases

Francisco Nuno Quintiliano Mendonça Carapeto Costa

MESTRADO EM INFORMÁTICA

2007

UNIVERSIDADE DE LISBOA
FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

Deep Linguistic Processing of Portuguese Noun Phrases

Francisco Nuno Quintiliano Mendonça Carapeto Costa

MESTRADO EM INFORMÁTICA

2007

Dissertação orientada pelo Prof. Doutor António Branco

Resumo

Esta dissertação descreve a implementação de um fragmento do Português numa gramática computacional
— LXGram— actualmente em desenvolvimento na Universidade de Lisboa. A LXGram é uma gramática
computacional para o processamento linguístico profundo do Português. Como tal, pode ser utilizada para
analisar frases do Português, produzindo uma descrição formal do seu significado, ou para gerar frases em
Português a partir de representações do significado.

A LXGram é desenvolvida numa plataforma desenhada especificamente para acomodar tais gramáticas —
o Linguistic Knowledge Builder (LKB). O LKB implementa algoritmos muito eficientes de análise e geração.
Aceita um formalismo que é declarativo e a operação fundamental é a unificação. Adicionalmente emprega um
sistema de tipos rígido com herança múltipla, o que proporciona um meio elegante de formular generalizações
interessantes e permite verificação estática de tipos. Existem várias outras gramáticas desenvolvidas no LKB,
para outras línguas naturais. Algumas destas gramáticas têm vindo a ser integradas em aplicações úteis, como a
tradução automática, sistemas de respostas automáticas a correio electrónico, correctores gramaticais e extracção
de informação.

Esta dissertação descreve a modelação e a implementação computacional na LXGram de um conjunto de
fenómenos linguísticos. Estes fenómenos relacionam-se com as propriedades gramaticais e o significado dos
sintagmas nominais em Português (qualquer expressão do Português que pode ocorrer nos contextos onde os
pronomes pessoais também ocorrem). A implementação destes fenómenos na LXGram foca-se em alguns
aspectos que não estão muito desenvolvidos nas outras gramáticas implementadas no LKB. É novo um modelo
computacional que dá conta de diversas interacções interessantes entre eles.

Nos primeiros dois capítulos desta dissertação faz-se uma introdução à tarefa em questão e descrevem-se as
ferramentas e o formalismo adoptados. Os três capítulos seguintes apresentam os dados que são cobertos e as
soluções que foram adoptadas. O último capítulo inclui uma revisão das ideias principais da dissertação, uma
avaliação da implementação levada a cabo e sugestões de trabalho futuro.

PALAVRAS-CHAVE: Processamento de Linguagem Natural, Gramáticas de Unificação, Lógicas de Atri-
butos e Tipos, Processamento Linguístico Profundo.

Abstract

This dissertation describes the implementation of a fragment of Portuguese in a computational grammar —
LXGram— currently being developed in the University of Lisbon. LXGram is a computational grammar for
the deep linguistic processing of Portuguese. As such, it can be used to parse Portuguese sentences, producing
a formal description of their meaning, or to generate Portuguese sentences from meaning representations.

LXGram is developed in a platform that is specifically designed to handle such grammars — the Linguistic
Knowledge Builder (LKB). The LKB implements very efficient algorithms for parsing and generation. It accepts
a formalism that is declarative and resorts to unification as the fundamental operation. It also employs a strict
type system with multiple inheritance, which provides an elegant means of stating interesting generalizations
and allows for static type checking. Several other grammars have been developed in the LKB, for other natu-
ral languages. Some of these grammars have been integrated in useful applications, like machine translation,
automated e-mail responses, grammar checking and information extraction.

This dissertation describes the modeling and computational implementation of a set of linguistic phenomena
in LXGram. These phenomena are related to the grammatical properties and the meaning of the Portuguese noun
phrase (any Portuguese expression that can appear in the contexts where personal pronouns are allowed). The
implementation of these phenomena in LXGram focuses on some aspects that are not very developed in the
other LKB grammars. A computational model that accounts for several interesting interactions among them is
new.

In the first two chapters of this dissertation we provide an introduction to the task at hand, and we describe
the tools and formalism that are adopted. The three chapters that follow present the data to be covered and the
solutions that were adopted. The last chapter reviews the main points of the dissertation, includes an evaluation
of the resulting implementation and suggests future work.

KEY WORDS: Natural Language Processing, Unification Grammars, Typed Feature Logics, Deep Linguis-
tic Processing .

Acknowledgments

The initial phase of the implementation of LXGram was conducted during my internship at the
University of Saarland, Department of Computational Linguistics. I am indebted to Hans Uszkoreit
for the conditions made available there to me. During that period I also received support from Valia
Kordoni and Berhold Crysmann, and I also thank them.

Some of the material in Chapter 5 has been previously published in a conference paper. I must
thank my co-author in that paper and supervisor, António Branco, whose suggestions have been
invaluable, during the preparation of that paper and this dissertation.

The work leading to this thesis was part of project GramaXing (FCT/PLUS/PLP/50301/2003),
funded by Fundação para a Ciência e Tecnologia, under the coordination of António Branco.

Lisbon, November 21, 2007
Francisco Nuno Quintiliano Mendonça Carapeto Costa

Contents

Contents i

List of Figures v

1 Introduction 1
1.1 Overview . 1
1.2 Context . 1
1.3 Subject Matter . 2
1.4 Tools . 4
1.5 Organization of the Dissertation . 7
1.6 Summary . 9

2 Background 11
2.1 Overview . 11
2.2 Head-Driven Phrase Structure Grammar . 11
2.3 Semantic Representations . 18

2.3.1 Expressiveness . 19
2.3.2 Composition of Meaning . 20
2.3.3 Minimal Recursion Semantics . 21

2.4 Strong Lexicalism . 28
2.5 Some Properties of the Formalism in the LKB and PET 29
2.6 Important Types and Mechanisms Defined in the LinGO Grammar Matrix 34
2.7 Summary . 41

3 Functors 43
3.1 Overview . 43
3.2 Syntactic Relations in HPSG . 43

3.2.1 Motivation for Functors . 45
3.3 General Feature Geometry . 47
3.4 Constraints on Head-Functor Phrases . 48

3.4.1 Word Order in Head-Functor Phrases . 49
3.4.2 Composition of Semantics in Head-Functor Phrases 52

3.5 Implementation Details . 54
3.5.1 Addition of Minimal Types . 56

3.6 Lexical Constraints on Rule Application . 61
3.7 Example . 62
3.8 Comments on the Functor Architecture . 64

i

3.9 Summary . 66

4 NP Syntax and Semantics 69
4.1 Overview . 69
4.2 Data . 69
4.3 General Constraints . 71
4.4 Determiners . 73

4.4.1 Example . 74
4.5 Predeterminers . 77
4.6 Modifying Adjectives . 82
4.7 Argumental Adjectives . 84
4.8 Noun Complementation . 87
4.9 Prenominal Possessives . 89

4.9.1 Possessives as Arguments of Nouns . 92
4.10 Cardinals, Ordinals and Markers of Indefinite Specifics 97

4.10.1 Semantics of Markers of Indefinite Specifics . 103
4.11 Cardinals and Markers of Indefinite Specifics as Determiners 106

4.11.1 Cardinal Determiners and the Semantics of Cardinals 110
4.12 PPs and AdvPs . 112
4.13 Relative Clauses . 118
4.14 Postnominal Demonstratives and Possessives . 120

4.14.1 Postnominal Demonstratives . 120
4.14.2 Postnominal Possessives . 123

4.15 Summary . 125

5 Noun Ellipsis and Missing Noun Generics 127
5.1 Overview . 127
5.2 Subject Matter . 127
5.3 Data . 128
5.4 Previous Accounts . 130
5.5 A Unary Syntactic Rule . 131

5.5.1 Example . 131
5.6 Transformation of CFGs with Epsilons . 132
5.7 Antecedent Resolution with Noun Ellipsis . 133

5.7.1 Data and Generalizations . 133
5.7.2 Towards an Analysis of Antecedent Resolution of Noun Ellipses 137

5.8 Semantics . 141
5.8.1 Example . 143

5.9 Missing Daughters in Phrase Types . 143
5.9.1 HEAD-DTR in Missing Noun Phrases . 148
5.9.2 Other Constructions with Missing Daughters . 153

5.10 Predeterminers in Missing Noun Constructions . 157
5.11 Summary . 158

ii

6 Conclusions 161
6.1 Summary and Discussion . 161
6.2 Evaluation . 167
6.3 Future Work . 168

Appendices 171
A Positions within the Noun Phrase . 173
B Test Suite . 175

Bibliography 191

iii

iv

List of Figures

1.1 Example of T DL code . 5
1.2 Type hierarchy and AVM corresponding to the T DL code in Figure 1.1 5
1.3 Example parse display and Minimal Recursion Semantics display in the LKB 6

2.1 Example MRS . 26
2.2 Simplified hierarchy of types for SYNSEM objects. 37
2.3 Hierarchy of list types. 38

3.1 Syntactic relations in (Pollard and Sag, 1994) . 43
3.2 Syntactic relations in (Sag et al., 2003) . 44
3.3 Syntactic relations in the LinGO Grammar Matrix . 44
3.4 Syntactic relations in (Van Eynde, 2003b) . 44
3.5 Syntactic relations in LXGram . 45
3.6 Minimal type to introduce the feature MARKER . 48
3.7 Outline of Head-Functor schemata . 48
3.8 Type basic-head-functor-phrase in the hierarchy of phrase types 48
3.9 Implementation of word order in binary headed phrases 50
3.10 Organization of Head-Functor phrases . 51
3.11 Organization of the features under the HEAD of functors 51
3.12 Constraints on the HEAD of prepositions . 52
3.13 Constraints on head-functor-phrase and functor-head-phrase 52
3.14 Example parse tree for a VP modified by a preceding PP. 53
3.15 Semantic constraints on Head-Functor phrases . 53
3.16 Type hierarchy for values of MARKER (version 1/3) . 56
3.17 Type hierarchy for values of MARKER (version 2/3) . 58
3.18 Feature structure for the type preposition after type expansion 59
3.19 Type hierarchy for values of MARKER (final version — 3/3) 61
3.20 Type hierarchy under head . 62
3.21 Parse for the NP os quatro naipes (the four suites) . 63
3.22 Blocking of prenominal PPs . 63
3.23 Visibility of determiners over nouns . 65

4.1 Simplified type hierarchy under head . 71
4.2 Type hierarchy under marking (version 1/6) . 72
4.3 Example of the semantics of determiners . 75
4.4 Type hierarchy under marking (version 2/6) . 77
4.5 Example of a determiner in NP initial position . 80

v

4.6 Example of a determiner preceded by a predeterminer 81
4.7 Type hierarchy under marking (version 3/6) . 83
4.8 Scope of prenominal and postnominal adjectives . 85
4.9 Syntactic analysis for um membro falso do IRA (a false member of the IRA) 89
4.10 Type hierarchy under marking (version 4/6) . 91
4.11 MRS fragment corresponding to the NP o seu cavalo (his/her/their horse) 94
4.12 MRS fragment corresponding to the NP o seu irmão (his/her/their brother) 94
4.13 Type hierarchy under present-or-absent (version 1/2) . 100
4.14 MRS with constrained quantifier scope . 104
4.15 MRS allowing for quantifier scope ambiguity . 105
4.16 Type hierarchy under scope . 105
4.17 MRS of a sentence with a postdeterminer cardinal . 110
4.18 Type hierarchy under marking (version 5/6) . 115
4.19 Type hierarchy under marking (final version — 6/6) . 118
4.20 MRS of a sentence with a demonstrative . 123
4.21 MRS of a sentence with a predeterminer and a demonstrative 124
4.22 Type hierarchy under present-or-absent (final version — 2/2) 125

5.1 Outline of the schema for missing noun constructions. 132
5.2 Parse for the NP estes dois - (these two) . 133
5.3 CFG fragment with epsilons . 133
5.4 CFG fragment without epsilons . 134
5.5 Example antecedent resolution in a parse tree . 142
5.6 Semantic constraints of the missing noun schema. 143
5.7 Parse for the example NP alguns - em Lisboa (some in Lisbon) 144
5.8 MRS for the NP alguns - em Lisboa (some in Lisbon) . 144
5.9 Type hierarchy of Head-Functor constructions (version 1/3) 147
5.10 Type hierarchy of Head-Functor constructions (version 2/3) 148
5.11 Type hierarchy of Head-Functor constructions (final version — 3/3) 149
5.12 General type for missing noun phrases after type expansion 152
5.13 Full constraints on bare NP phrases . 156

vi

1
Introduction

1.1 Overview

In this chapter we present the main topics addressed throughout this dissertation. We introduce
very briefly the language phenomena that will be covered, the conceptual and development context
assumed and the tools that are used to implement a computational model of them. We present a
motivation for these topics, and refer the issues and problems that arise in handling them. We discuss
why they are important and what applications their implementation can support. Finally, we also
present an overview of the remaining chapters in this dissertation.

1.2 Context

The area of Natural Language Processing (NLP) is ultimately concerned with the development of
software that can understand text written in a natural human language as humans do, or at least
with the development of software that can behave as if it understood it. The other side of the coin,
generating meaningful and appropriate text in a natural human language, is another goal.

There are many applications where such behavior is useful. The classical example is HAL, from
the movie 2001: A Space Odyssey, a computer that can dialog with human beings. We are still very
far from producing systems that allow humans to communicate with computers as easily as fictioned
in that film, but progress in this area has led to a number of less ambitious yet very useful applica-
tions: machine translation, question answering, information extraction, chatterbots, automated e-mail
responses, grammar checking, automated knowledge acquisition, to name a few.

Machine translation is a particularly important application, with tremendous economical, social
and cultural potential.1 It has been the classic application of the sort of systems we will be talking
about in this text. But even current state-of-the-art machine translation cannot compare to top human
translation as far as quality is concerned.

Inside NLP several subareas and methods can be found. In this text we will be focusing on deep
symbolic processing. By symbolic we mean that machine learning algorithms are not used, but do-
main knowledge is programmed directly, and the system is rule-based. By deep we mean that we are
interested in processing text in order to generate semantic representations of the input, i.e. detailed
representations of its meaning. More precisely, we are interested in converting between meaning
representations and Portuguese sentences, in both directions.

Grammars for deep linguistic processing try to convert a natural language expression into its
syntactic and semantic representation (to parse) and produce a natural language expression from its
semantic representation (to generate).

1For instance, one of the press releases of the European Union, accessible on the site of the European Commission (http://ec.europa.eu),
mentions that “in 2003, before enlargement and with a population of 379 million, expenditure on translation by all the EU institutions came
to 549 M EUR. (· · ·) Before the 2004 enlargement, translation in all institutions accounted for about 0.55% of the total budget of the EU
and about 9% of the administrative expenditure in the EU”.

1

2 CHAPTER 1. INTRODUCTION

The conception of meaning assumed here is very specific. It is best understood with an example:
the meaning representation that a deep grammar assigns to a sentence like Nietzsche killed God only
says that the ordered pair whose first element is an entity known as Nietzsche and whose second is an
entity known as God is a member of the set of ordered pairs that corresponds to the relation kill. That
is, we basically capture compositional semantics — how the meaning of parts of a sentence relate to
each other.

As far as our example is concerned, a deep grammar does not identify the entities Nietzsche and
God in the real world, it does not identify all pairs in that set (the extension of kill),2 and, for example,
it does not say that the second elements of these pairs are dead (its intension).3

Nevertheless, our meaning representations are actually much more powerful than the previous
explanation might suggest. Semantic representations can be viewed as normalized forms of surface
strings, that abstract from superficial, grammatical aspects of language (morphology, syntax, etc.). A
deep grammar can be viewed as an interface between applications and natural language: the gram-
mar encapsulates language specific knowledge. Moreover, the semantic representations are more
than a mere normalization, they are logical formulas and as such have a precise interpretation and
support some automated inference.

A grammar must of course ensure that the meaning representations it produces are well-formed,
that they adhere to a specific format. It must also ensure that the natural language expressions it
manipulates are also grammatical in the language in question. A grammar can be used both for
parsing and generation; it is desirable that the strings it produces in generation are grammatical just
like it is important that the semantic representations it generates in parsing are well-formed.

Therefore, some computational grammars (also termed as precision grammars) try to account for
all and only the expressions that belong to a given language: the ones that are not acceptable should
be rejected. For these reasons, precision grammars cannot disregard the little details, and adopting an
expressive formalism is therefore inevitable.

The work presented in this dissertation was conducted as part of the development of a computa-
tional grammar for Portuguese, LXGram,4 currently being implemented in the University of Lisbon
(Branco and Costa, 2006, 2007a,b; António and Francisco, 2007).

LXGram is integrated in the DELPH-IN initiative, an international collaborative effort to produce
precision grammars for several languages, some of which are already integrated in important mul-
tilingual applications, like machine translation (Bond et al., 2005). Other grammars exist that are
part of DELPH-IN: the LinGO English Resource Grammar for English (Copestake and Flickinger,
2000), Jacy for Japanese (Siegel and Bender, 2002) and the German Grammar for German (Müller and
Kasper, 2000) are currently the largest ones. There are other DELPH-IN grammars being developed
for French, Modern Greek, Korean, Norwegian, Spanish and other languages.

1.3 Subject Matter

This dissertation is concerned with the modeling and implementation of a non-trivial subset of phe-
nomena in the noun phrase (NP) domain in Portuguese. We propose to (1) describe and model the
linguistic knowledge of the noun phrase domain in Portuguese and (2) implement it by expanding a
computational grammar for the deep linguistic processing of Portuguese accordingly, addressing the

2Also called its denotation or, in Fregean terms, its meaning or reference (Bedeutung).
3Its connotation or Frege’s sense (Sinn).
4LX is used in Portugal to abbreviate Lisboa (Lisbon), because the intersection of the sets of phonetic sequences representable in

Portuguese writing by the strings “x” and “is” is non-empty.

1.3. SUBJECT MATTER 3

key implementation issues.
A noun phrase is any expression that has the same syntactic distribution as a personal pronoun

(i.e. it can replace a personal pronoun without loss of grammaticality) . The following expressions
inside square brackets are all examples of NPs, followed by a verb:

(1) a. [NP Eles]
they

avariaramV.
broke down

They broke down.
b. [NP Esses

those
carros]
cars

avariaramV.
broke down

Those cars broke down.
c. [NP Os

the
meus
my

carros]
cars

avariaramV.
broke down

My cars broke down.
d. [NP Aqueles

those
meus
my

dois
two

carros]
cars

avariaramV.
broke down

Those two cars of mine broke down.
e. [NP Ela]

she
saiuV.
left

She left.
f. [NP A

the
Ana]
Ana

saiuV.
left

Ana left.

The reasons why the topic of NPs was chosen are: (1) a grammar must be able to process NPs,
as almost every sentence will contain at least one NP; (2) the topic is not very developed within
the grammatical framework that is adopted (see Section 2.2); (3) there are interesting and non-trivial
issues to be addressed; (4) NPs exhibit the classical problems of language processing — ambiguity at
all levels: syntactic and semantic (they are the locus of the prime example of semantic ambiguity, viz.
quantifier scope ambiguity — see Section 2.3).5

To illustrate some of the issues involved, consider the difference in meaning between (2a) and (2b).

(2) a. um
a

falso
fake

médico
doctor

chinês
Chinese

a fake Chinese doctor
b. um

a
falso
fake

médico
doctor

que
that

é
is

chinês
Chinese

a fake doctor that is Chinese

In (2b) an entity is described as not being a doctor but being Chinese, whereas in (2a) an entity is
described as not being simultaneously a doctor and Chinese. These examples contrast with the ones
in (3), in that the examples in (3) convey the same meaning.

(3) a. um
a

médico
doctor

chinês
Chinese

a Chinese doctor
5Also, some the data adduced to show that the syntax of natural languages cannot be described by a finite state machine includes relative

clauses inside NPs (Chomsky, 1957).

4 CHAPTER 1. INTRODUCTION

b. um
a

médico
doctor

que
that

é
is

chinês
Chinese

a doctor that is Chinese

Also, there is no upper bound on the length of an NP, as the following Portuguese tongue-twister
illustrates:

(4) O
the

rato
mouse

roeu
gnawed

[NP a
the

rolha
cork

da
of the

garrafa
bottle

de
of

rum
rum

do
of the

rei
king

da
of the

Rússia
Russia

].

The mouse gnawed the cork of the king of Russia’s bottle of rum.

The expression labeled with NP in this example can be given the following structure, where PP
(preposition phrase) denotes an expression consisting of a preposition followed by an NP (and D
stands for determiner, P for preposition, N for noun, and N for a noun with no arguments or a se-
quence consisting of a noun followed by its arguments):

NP

�
�

�

H
H

H

D

a

N

�
�

��

H
H

HH

N

rolha

PP

�
�

��

H
H

HH

P

de

NP

�
�

�
�
�

H
H

H
H

H

D

a

N

�
�

�
�

H
H

H
H

N
�

��
H

HH

N

garrafa

PP
�� HH

P

de

NP

rum

PP
�

��
H

HH

P

de

NP
�

��
H

HH

D

o

N
�

�
H

H

N

rei

PP
�

�
H

H

P

de

NP
�� HH

D

a

N

Rússia

It shows recursion; in particular a PP (which contains an NP) can be inside an NP.
These and other issues will be addressed in the dissertation.

1.4 Tools

Like the other grammars in DELPH-IN, LXGram is being implemented in the LKB— Linguistic
Knowledge Building system (Copestake, 2002) —, with [incr tsdb()] (Oepen, 2001) being used for test
suite management, regression testing, and training of maximum entropy models for parse selection.6

6When the grammar produces more than one solution, a stochastic model is used to choose the fittest one.

1.4. TOOLS 5

These grammars are also compatible with PET— Platform for Experimentation with efficient HPSG
processing Techniques (Callmeier, 2000) —, an efficient parser for context free languages.

Whereas there is no separate process of compiling and running a grammar in the LKB, this is
so in PET. In any case, a high amount of checking is performed when a grammar is loaded in the
LKB: type checking, cyclicity checks,verification of redundant specifications in the source code, etc.
PET provides a compiler (flop) and an interpreter (cheap). With PET, a grammar is first compiled to a
binary format with flop and the result interpreted with cheap. This allows for efficiency optimizations
(like precompiling the lexicon or the results of type unification, as reported in (Kiefer et al., 1999)) that
enable a grammar to parse text very fast.

Both the LKB and PET accept grammars written in T DL — Type Description Language (Krieger
and Schäfer, 1994). These systems accept code describing typed feature structures (see Chapter 2),
which includes code conforming to Head-Driven Phrase Structure Grammar (HPSG, see Section 2.2).
LXGram is based on HPSG, too. The syntax of T DL is very similar to the AVM (attribute value
matrices) descriptions in theoretical HPSG, as exemplified in Figure 1.1 and Figure 1.2.

some-type := some-supertype & other-supertype &
[A.B [C t,

D [E.F #Value-of-F-and-G,
G #Value-of-F-and-G]]].

Figure 1.1: Example of T DL code.

some-type

some-supertype other-supertype

some-type

A|B

C t

D

[

E|F 1

G 1

]

Figure 1.2: Type hierarchy and AVM corresponding to the T DL code in Figure 1.1. In the type hierarchy,
more specific types appear below more general ones.

Unification is denoted by labels starting with a # in T DL and with boxed integers or letters in
AVMs. Has-a relations are represented via the symbol “.” in T DL and a vertical bar in AVMs. The
T DL code Attribute1 [Attribute2 type] is equivalent to Attribute1.Attribute2 type. Similarly, the AVM
notation

[

ATTRIBUTE1
[

ATTRIBUTE2 type
]

]

is equivalent to
[

ATTRIBUTE1|ATTRIBUTE2 type
]

. Section 2.2

presents a more detailed description of the AVM notation, which will be employed throughout this
dissertation.

Figure 1.3 presents a parse window in the LKB for the sentence o meu carro está na oficina (my

car is at the mechanic’s). It also shows the semantic representation that LXGram associates with that
sentence, using Minimal Recursion Semantics (MRS, see Section 2.3).

6
CH

A
PTER

1.
IN

TRO
D

U
CTIO

N

Figure 1.3: Example parse display and Minimal Recursion Semantics display in the LKB

1.5. ORGANIZATION OF THE DISSERTATION 7

LXGram is built on top of the LinGO Grammar Matrix (Bender et al., 2002), a starter kit for HPSG
grammars in T DL using MRS. The LinGO Grammar Matrix comes with an interesting hierarchy for
many types responsible for basic attributes of the HPSG sign (a sign is a word or a phrase in HPSG),
covering lexical entries, morphological and syntactic rules, composition of semantics and a treatment
of basic phrase structure and long distance dependencies (see Section 2.6).

1.5 Organization of the Dissertation

The dissertation proceeds as follows.
Chapter 2 presents a description of how a deep grammar operates and explains the main prop-

erties of the formalism that is employed in this dissertation to model Portuguese NP syntax and
semantics. We will also describe the format of the semantic representations that are used in LXGram.
Additionally, Chapter 2 includes an overview of some of the types and features in the LinGO Gram-
mar Matrix that will be referred to in the rest of the dissertation. They are somewhat different from
the HPSG analyses found in the literature in view of the limitations imposed by the systems used.

In Chapter 3 the basic feature geometry that will be employed in the analyses developed in this
dissertation is described. We will adopt a specific dialect of HPSG that differs from what is in the
LinGO Grammar Matrix, and describe its implementation in LXGram.

Chapter 4 develops an analysis and implementation of a substantial number of elements that can
appear in NPs, and constraints among them. We will look at various elements that can make up NPs:

• predeterminers

(5) Todos
all

os
the

homens
men

são
are

mortais.
mortal

All men are mortal.

• determiners

(6) Todos
all

os
the

homens
men

são
are

mortais.
mortal

All men are mortal.

• possessives

(7) a. Chegou
has arrived

a
the

tua
your

encomenda.
order

Your order has arrived.
b. Chegou

has arrived
uma
a

encomenda
order

tua.
your/yours

An order of yours has arrived.

• cardinals

(8) a. Chegaram
have arrived

as
the

duas
two

encomendas.
orders

The two orders have arrived.
b. Chegaram

have arrived
duas
two

encomendas.
orders

Two orders have arrived.

8 CHAPTER 1. INTRODUCTION

• ordinals

(9) O
the

primeiro
first

lugar
seat

está
is

ocupado.
taken

The first seat is taken.

• elements that mark indefinite specific NPs

(10) Todos
all

os
the

homens
men

leram
read

um
a

certo
certain

livro.
book

All men read a certain book.

• prenominal and postnominal adjectives

(11) a. Todos
all

os
the

homens
men

batem
beat

num
on a

pobre
poor

burro.
donkey

All men beat a poor donkey.
b. Todos

all
os
the

homens
men

batem
beat

num
on a

burro
donkey

cinzento.
gray

All men beat a gray donkey.

• complements of nouns

(12) O
the

pai
father

do
of the

Rui
Rui

chegou
arrived

ontem.
yesterday

Rui’s father arrived yesterday.

• relative clauses

(13) Todo
every

o
the

homem
man

que
who

tem
owns

um
a

burro
donkey

bate-lhe.
beats it

Every man who owns a donkey beats it.

• other elements that can follow the noun in an NP

(14) Era
it was

um
a

cão
dog

com
with

três
three

pernas.
legs

It was a dog with three legs.

We will discuss word order among these elements, and restrictions on what elements can occur with
other elements in the same NP. The formalism presented in Chapter 2 — typed feature structures —
will be used to model these phenomena, in Chapter 4.

Chapter 5 focuses on NPs that lack the main noun, as in the following examples (where a “-”
marks the place where a noun is expected):

(15) a. [NP Os
the

- que
who

chegarem
arrive

primeiro
first

] esperam.
wait

The ones who arrive first wait.
b. Há

there are
cães
dogs

com
with

três
three

pernas,
legs

mas
but

não
not

há
there are

[NP - com
with

cinco].
five

There are dogs with three legs, but there are none with five.

1.6. SUMMARY 9

We will look at several aspects of these NPs: their semantics, antecedent resolution (in (15b) the noun
form cães — dogs — is recoverable from context), co-occurrence restrictions (not all of the NP elements
above can occur in these NPs). We will develop an analysis that can capture the specificities of these
constructions by resorting to the material developed in Chapter 4 and combining it in a different way.

Finally, in Chapter 6 a summary of this dissertation is presented. Future work is discussed, and
conclusions are drawn.

1.6 Summary

In this chapter, we introduced the main goals and topic of the present dissertation. We discussed the
purpose of a deep computational grammar: to encode information regarding natural language details
and provide an interface for applications. This interface language is a representation of meaning
based on logic. The meaning representation language has a well-known interpretation and supports
at least some automated inference. It is also amenable to further processing of other kinds, because
it is formal and precise. A deep grammar simply translates between these semantic representations
and natural language strings, in both directions, as it is typically written in a declarative language.

We presented LXGram, a computational grammar for Portuguese currently in development, where
the material that will be presented in the following Chapters has been implemented.

In this dissertation, we focus on the modeling and implementation of the syntax and semantics
of the Portuguese noun phrase in LXGram. This topic is important because noun phrases are very
frequent in text, and any natural language processing system must accordingly deal with them. It is
also non-trivial, as there are several interactions between the elements that are part of NPs.

Our focus will be the implementation of NPs in a deep computational grammar. We are thus inter-
ested in describing precisely the way the various elements that can appear in NPs can combine with
each other, their syntax. Furthermore, we are interested in processing natural language expressions
(NPs in our case) into representations of their meaning, their semantics.

10 CHAPTER 1. INTRODUCTION

2
Background

2.1 Overview

In this chapter, we present the framework that is used to model and implement the subject matter of
this dissertation, the framework of Head-Driven Phrase Structure Grammar (HPSG). We present the
main properties of the formalism used in HPSG.

Afterwards, a description of the format of semantic representations that is employed in LXGram
is provided. We start by explaining how semantic representations are produced using the lambda
calculus. Next we present some of the difficulties that arise when this method is employed, and
present Minimal Recursion Semantics, which has been developed with the purpose of overcoming
these difficulties. This is the format employed in LXGram.

We proceed to discuss the properties of the type-feature logic underlying the particular systems
used to implement LXGram, which shows some differences with respect to the original HPSG, as in
(Pollard and Sag, 1994). This gives a precise meaning to the systems of constraints that are presented
in the rest of this dissertation.

LXGram is implemented on top of an open-source module called the LinGO Grammar Matrix.
Some parts of the LinGO Grammar Matrix code that LXGram uses are presented, as they will be
important for the discussion in the following chapters.

2.2 Head-Driven Phrase Structure Grammar

The linguistic analysis follows the Head-Driven Phrase Structure Grammar (HPSG) framework pre-
sented in (Pollard and Sag, 1987), (Pollard and Sag, 1994) and (Sag et al., 2003).

Since its inception, HPSG has been concerned with computational implementations (Sag et al.,
2003, p. 537). As a consequence, it has borrowed heavily from computer science. Unsurprisingly, it
is well suited to computational implementations, and well known techniques can be used to compile
and run HPSG grammars. Among such instruments one finds:

• Type system The objects that are used to model the domain are typed. We present an example.
All objects representing a syntactic expression are associated with the type sign. These expres-
sions can be atomic — words —, of the type word, or structured — phrases —, of the type phrase.
Types are organized in a type hierarchy, that defines is-a relations. In this example, the fact that
all words (elements of the type word) and all phrases (elements of the type phrase) are syntactic
units (of type sign) is captured by positing that the types word and phrase are subtypes of the
type sign (in other words, sign is a supertype of word and phrase). This hierarchy can be depicted
graphically in the following way:

word

sign

phrase

11

12 CHAPTER 2. BACKGROUND

This means that every word is a sign and every phrase is also a sign.

Types can be viewed as denoting sets (the set of instances of that type, which we can call its
extension or denotation): saying that a certain instance is of the type sign is the same as saying
that it belongs to the set of signs. Under this perspective, the extension of a subtype of τ , σ ,
is a subset of the extension of τ , since every instance of σ must be an instance of τ . Since the
extension of a type must be a superset of the extensions of all its subtypes, it contains all the
elements in the extensions of all its subtypes, i.e. it is a superset of the union of the extensions
of its subtypes.

Defining a type hierarchy like the one in our example amounts to saying that the set of words is
a subset of the set of signs, and that the set of phrases is also a subset of the set of signs.

Just like set inclusion, the subtype/supertype relation is transitive. Furthermore, there is exactly
one type that is a supertype of all types — the top type —, which we will represent with the
symbol > or the string *top*.

The term sort is also often used for the concept of type.

• Has-a relations We can associate attributes (or features) to types. For instance, we can postulate
that every sign has a string representation, and represent this piece of information via the AVM
(attribute-value matrix) notation:1

sign
ORTH string

This AVM means that all elements of the type sign have an orthographic representation, which
is a string. “String” is also a type, so our mini-hierarchy now looks like this:

sign

top

word phrase

string

Sometimes the value of a certain feature cannot be given an intensional definition.

This is the case with our example: the correspondence between semantic/syntactic complexes
(instances of sign) and their associated surface representations has to be listed (the value of
ORTH must be specified for each word), as it cannot be given by rules — it is an arbitrary, or
conventional, correspondence. Therefore, the name sign is used in HPSG for the supertype of
words and phrases, where sign means a completely arbitrary and socially agreed upon relation
between meaning and form, like a traffic sign. However, in phrases, the relation between mean-
ing and form is arguably predictable from the meaning and form of the elements composing
those phrases and the way they are combined (the Principle of Semantic Compositionality, or

1In HPSG, this attribute is named PHON. Here we are not concerned with phonological or phonetic representations, since we are
processing written text. In this text we will thus use the name ORTH for the orthographic representation of a natural language expression.
In several computational implementations it is called STEM (this is also our case), but we will use ORTH here in order to be neutral with
respect to morphology. We are also simplifying here in declaring ORTH to be a string instead of a list of strings.

2.2. HEAD-DRIVEN PHRASE STRUCTURE GRAMMAR 13

Frege’s Principle, a crucial assumption of Natural Language Processing). Ultimately, the need
for extensional definitions is the reason why a lexicon is required in deep grammars.

Feature structures can also be depicted as directed graphs. In such representations, a node
represents a type and a feature represents an edge from the node representing the type where it
is present to the node representing the type that it takes as value.

The following example AVM corresponds to the graph below it:2

sign
ORTH string

DTR

sign
ORTH string

sign

stringORTH

sign

DTR

string
ORTH

• Type Unification Unification on types can be seen as set intersection of their extensions. The
result is completely determined by the type hierarchy, though. For instance, given the following
hierarchy:

animal

top

male-animal female-animalhuman

male-human female-human

elephant

male-elephant female-elephant

the unification of elephant and male-animal is male-elephant, which can be written as elephant u
male-animal = male-elephant. The result is found by traveling down along the type hierarchy from
elephant and male-animal until a common subtype of the two is found. For instance, according to

2This example is not totally well-typed (see Section 2.5).

14 CHAPTER 2. BACKGROUND

this hierarchy, all the following propositions hold:

male-animaluhuman = male-human
female-animaluhuman = female-human

female-animalu elephant = female-elephant
animalu elephant = elephant

*top*u female-animal = female-animal
humanu elephant = ⊥

In the last example ⊥ denotes inconsistency (according to this hierarchy, there is no subtype
common to human and elephant, which represents the fact the the intersection of the set of human
beings and the set of elephants is empty). The result is unification failure.3

• Multiple Inheritance A type inherits all features from all its supertypes.

Suppose that the type animal in the hierarchy above is defined as having an attribute NAME of
type name and this value is further constrained in elephant and male-animal, using the extended
hierarchy below:

animal
NAME name

elephant
NAME elephant-name

male-animal
NAME male-name

animal

top

male-animal female-animalhuman

male-human female-human

elephant

male-elephant female-elephant

name

male-name female-nameperson-name elephant-name

male-person-name female-person-namemale-elephant-name female-elephant-name

jumbo babar

These constraints state that all animals have a name, all elephants have an elephant name, and
all male animals have a male name.

These constraints are inherited by all their subtypes. For instance, if no extra constraints are
defined for the type male-elephant, this type has the inherited constraints:

3We use the notation of Copestake (2000) to denote unification, subsumption, the universal unifier and inconsistency:
⊥ inconsistency
> the most general type

τ uσ the (most general) unifier of τ and σ (⊥ if they are incompatible)
τ v σ σ subsumes τ (σ is more general than τ)

Type hierarchies are displayed with more general types above more specific ones, e.g.:

>

σ

τ

⊥

It should be noted that it is precisely in the reverse direction of the notation used in Carpenter (1992), another commonly used notation.
There, the more general types appear in hierarchies in a position lower than more specific types, with the consequence that there ⊥ denotes
the top type and > inconsistency, unification is represented by t and τ v σ means that τ subsumes σ .

2.2. HEAD-DRIVEN PHRASE STRUCTURE GRAMMAR 15

male-elephant
NAME male-elephant-name

because male-elephant-name is the unifier for male-name (inherited from male-animal) and elephant-
name (inherited from elephant).
Inheritance in this type system is actually a case of unification, since the constraints on a type
are the result of the unification of all constraints in supertypes and the constraints defined for
that type.
Inheritance is monotonic: attributes cannot be redefined in subtypes, but constraints can be
added. The added constraints have to be compatible with the inherited constraints: a type has
to be unifiable with all of its supertypes.4

• Unification of Feature Structures The unification of two feature structures A of type a and B of
type b is a feature structure C of type c, where c is the unifier of a and b. Additionally, all
attributes of A and all attributes of B are present in C and their value is the result of unifying the
corresponding attributes of A and B. Also, if there are reentrancies (unified features), they are
preserved.
As an example, suppose we add two features, FATHER to the type animal and BEST-FRIEND to the
type human, and further constrain the inherited FATHER of human and elephant:5

animal
FATHER male-animal

human
FATHER male-human
BEST-FRIEND animal

Then the following example illustrates the result of unification of feature structures, where an
instance of type animal with added constraints (the unification of the features NAME and FA-
THER|NAME)6 is unified with an instance of type male-human, also with added constraints (the
unification of the features FATHER and BEST-FRIEND):7

animal
NAME 1 male-name

FATHER

male-animal
NAME 1

u

male-human
NAME male-name
FATHER 1 male-human
BEST-FRIEND 1

=

male-human
NAME 1 male-name

FATHER 2

male-human
NAME 1

BEST-FRIEND 2

The types of the features are often omitted in instances if they are not more specific than the
type that that feature is declared to be. For instance, given the above definitions, the following
are equivalent:

animal
NAME 1

FATHER|NAME 1

animal
NAME 1 male-name

FATHER

male-animal
NAME 1

4Some versions of HPSG (e.g. (Sag et al., 2003)) use defaults/non-monotonic inheritance, where constraints can be overridden in
subtypes, but we will not use defaults here.

5This example is not totally well-typed, as explained in Section 2.5.
6The notation A|B is equivalent to A [B].
7The features tagged with the same boxed integer point to the same instance (they are unified, reentrant, or structure-shared).

16 CHAPTER 2. BACKGROUND

Since FATHER is declared to be of type male-animal in the definition of the type animal, it can
never take a value more abstract than that, so the presence of this value in the example on the
right is not informative. By the same token, if FATHER is of the type male-animal and male-animal
is declared to have a feature NAME of type male-name, the type of this feature in these instances
is also redundant (unless these instances exhibited a more specific value for this feature).

The following token is therefore inconsistent and a type error:

animal
NAME 1 female-name
FATHER|NAME 1

It describes an animal with a female name that is the same as the name of that animal’s father,
which is required to be a male name by our system of constraints.

Feature structures with reentrant paths (unified features) correspond to graphs where the edges
representing the unified features point to the same node:

animal
NAME 1 male-name

FATHER

male-animal
NAME 1

animal male-name
NAME

male-animal

FATHER NAME

Unification therefore represents identity between instances.

• Polymorphism An instance can have a feature with a value that is more specific than the type
that that feature is declared to be in that instance’s type. The following instance of animal is
valid:

animal
NAME jumbo

Furthermore, a feature F of a type can be more specific than the same feature F in that type’s
supertypes. The examples constraining the feature NAME in the types animal, male-animal and
elephant above illustrate this point.

There are some cosmetic differences with respect to some programming languages that allow
polymorphism (like Java). The following instance on the left is actually legal, with the fea-
ture NAME instantiated with a type (name) more general than the type which is declared to
be (elephant-name) in that instance’s type (elephant). However, due to unification with the con-
straints on its type it is actually equivalent the one on the right (where NAME does not have a
type more general that the type of NAME in the definition of elephant):

elephant
NAME name

elephant
NAME elephant-name

2.2. HEAD-DRIVEN PHRASE STRUCTURE GRAMMAR 17

That is, the structure on the left has no type error, but it is in fact more specific (it is as informative
as the structure on the right) than what is actually displayed.
The following token on the left is also legal, but given the definitions above, it is equivalent to
the structure on the right (because according to the definition of elephant above, elephants have
elephant-names and, according to the hierarchy, female-name and elephant-name unify to female-
elephant-name):

elephant
NAME female-name

elephant
NAME female-elephant-name

These differences are cosmetic, because in the LKB the actual values will always be as specific
as, or more specific than, the values declared in the types of instances.
This sort of representation is allowed in the code accepted by the systems used to implement
LXGram, but at run time the more specific types are always used.

In Section 2.5 more properties of the specific type system used in the implementation of LXGram
and assumed in this dissertation are presented.

Because of these similarities with programming languages, several known techniques can be used.
For instance, the type system allows for static type checking: when a grammar is loaded or compiled
into a binary format, type errors can be detected. Known algorithms for efficiently computing unifi-
cation can be used in HPSG processors (Malouf et al., 2000). It is also a declarative formalism, so the
same system of constraints (the grammar) can be used both for parsing and generation.

Note that syntactic trees have no theoretical status in HPSG. Trees are merely a visualization de-
vice. Because trees are just a special case of graphs, they can be described via feature structures. In
the systems employed (LKB and PET), there is a parameter that defines the name of the feature that
represents daughters of syntactic nodes. This feature is usually ARGS. Its value is a list. Every ele-
ment of that list represents a daughter, and the order of the elements in that list represents precedence
between these daughters. All other features in the same feature structure describe information about
the mother node. As an example, the following feature structure on the left can be abbreviated by the
tree on the right.

SYNSEM|LOCAL|CAT

HEAD 1 noun
VAL|COMPS 〈〉

ARGS

〈

SYNSEM|LOCAL|CAT

HEAD 1 noun
VAL|COMPS

〈

2
〉

,

SYNSEM 2

LOCAL|CAT

HEAD preposition
VAL|COMPS 〈〉

〉

N
��HH

N PP

In the tree, N represents a node with SYNSEM|LOCAL|CAT|HEAD of type noun and SYNSEM|LOCAL

|CAT|VAL|COMPS with an empty list as its value, N represents a node with the same HEAD type but a
non-empty COMPS, and PP represents a node with a HEAD of type preposition and an empty COMPS.

18 CHAPTER 2. BACKGROUND

The labels on tree nodes are abbreviations of complex feature structures. They are not types. In
the systems used, there are files where one specifies the mapping between feature structures and
labels. As mentioned before, trees and labels on tree nodes have no significance (they are not used for
computations) — they are just a simplified visualization of feature structures.

As a final remark, syntax rules are merely typed feature structures. They are also organized in
a type hierarchy. The leaf types (the ones with no subtypes) are the ones used by the parser and
generator (in the LKB and PET they have to be declared in a special file). The more abstract types
are a means to encode generalizations across syntactic rules. For instance, the phrase just presented
could be produced by a rule with the constraints:

SYNSEM|LOCAL|CAT

HEAD 1

VAL|COMPS 2

ARGS

〈

SYNSEM|LOCAL|CAT

HEAD 1

VAL|COMPS

FIRST 3

REST 2

,
[

SYNSEM 3
]

〉

The unification between the HEAD feature of the mother and the HEAD attribute of the head daugh-
ter (the Head-Feature Principle), which is the leftmost daughter in this example, occurs in several
rules and is an example of a constraint that can be implemented in a general type and inherited by all
rules to which it applies.8

2.3 Semantic Representations

As mentioned before, a deep grammar’s interface for applications is generally the semantic represen-
tations it associates with natural language expressions.

MRS — Minimal Recursion Semantics (Copestake et al., 2005) — is employed for the representa-
tion of compositional semantics. MRS is not a semantic theory, but rather a way to represent logical
formulas.

The standard approach to represent natural language meaning is to translate natural language
expressions into logical formulas. This has been done since the work of Montague (1974). This section
presents a quick overview of Montague semantics. Dowty et al. (1981), Chierchia and McConnell-
Ginet (1990), Partee et al. (1990), Kamp and Reyle (1993) and de Swart (1998) provide comprehensive
introductions to compositional semantics, and Covington (1994) presents its integration in Prolog
Definite Clause Grammars.

We cannot present a reasonable description of predicate calculus here, but we show an example of
how, despite the limitations, this is useful. For instance, if a grammar translates a sentence like a black

cat ate all my shoes into:
∃x[black(x)∧ cat(x)∧∀y[shoe(y)∧belonged(y, i) =⇒ ate(x,y)]]

(there is an x such that x is black and x is a cat and for all y, if y is a shoe and y belonged to i, then x

ate y) then, assuming it is true, there are ways to manipulate it in order to infer e.g.:

8See Section 2.6 for an explanation of the features FIRST and REST in this example.

2.3. SEMANTIC REPRESENTATIONS 19

∃x[black(x)] (there is at least one black entity)
∃x[cat(x)] (there is at least one cat)
∃x[black(x)∧ cat(x)] (there is at least one black cat)
∀x[¬∃y[ate(y,x)] =⇒ ¬[shoe(x)∧belonged(x, i)]] (everything that was not eaten

is not a shoe of mine)
but it is not valid to infer e.g.:
∃x[shoe(x)∧belonged(x, i)] (I had shoes)

and inference can be performed by computers, although in a limited way.
Unary relations, like black and cat denote sets of entities and binary relations denote sets of or-

dered pairs of entities. So the first formula describes the following relations: |BLACK ∩CAT | > 0
(the intersection of the set of black things and the set of cats has at least one element in it) and
SHOE ∩ { x | (x, i) ∈ BELONGED} ⊆ { y | (x,y) ∈ ATE ∧ x ∈ BLACK ∩CAT} (the intersection of the
set of shoes with the set of all x such that x belonged to i is a subset of the set of all y such that the pair
(x,y) is in ATE and x is in the intersection of BLACK and CAT).

With this description we can build a model that satisfies this sentence (i.e. we can imagine a
scenario where this sentence is true). Two possible models are the following, where De is the set of all
entities under consideration:

De = {tom, i}

CAT = {tom}

BLACK = {tom}

SHOE = {}

BELONGED = {}

AT E = {}

De = {tom, i,s1}

CAT = {tom}

BLACK = {tom}

SHOE = {s1}

BELONGED = {(s1, i)}

ATE = {(tom,s1)}

The following model does not make our sentence true:
De = {tom, i,s1}

CAT = {tom}

BLACK = {tom}

SHOE = {s1}

BELONGED = {(s1, i)}

ATE = {}

It is possible to link a grammar to a model builder. However, the simple fact that the semantic
representations produced by deep grammars are formal and have a precise meaning makes them
amenable to be further processed automatically, in a variety of ways, according to the application.

2.3.1 Expressiveness

There are several limitations. One is that first order logic is not expressive enough to translate all
natural language expressions. The classical example is the word most in sentences like most cats meow.
If we assume the meaning of this sentence is |CAT ∩MEOW | > |CAT |/2, there is no way to represent it
in first order predicate calculus if we do not know the cardinality of the sets involved, or if they are of
infinite size (Barwise and Cooper, 1981).

We then need second-order logic.9 It is customary to use generalized quantifiers, so instead of
the universal and existential first order quantifiers (second column in the following examples) or set-

9In second order logic, but not in first order logic, relations can themselves be arguments of other relations. Adopting second order logic
is not an innocuous decision. First order logic is already undecidable (it is impossible to develop a program that determines the truth value
of arbitrary propositions). Second order logic is also incomplete (not all tautologies are theorems; some true propositions cannot be proven,
either by a computer or a human).

20 CHAPTER 2. BACKGROUND

theoretical expressions (third column), we will employ a variety of generalized quantifiers (fourth
column), as in:

All cats meow. ∀x[cat(x) =⇒ meow(x)] CAT ⊆ MEOW all(x,cat(x),meow(x))

A cat meows. ∃x[cat(x)∧meow(x)] CAT ∩MEOW 6= {} exists(x,cat(x),meow(x))

Most cats meow. |CAT ∩MEOW | > |CAT |/2 most(x,cat(x),meow(x))

2.3.2 Composition of Meaning

The standard way to compose semantics is to associate lambda expressions to expressions and specify
in phrases how they combine.10 Consider the following small context free grammar (CFG):

(1) S → NP VP
(2) NP → D N
(a) D → every

(b) D → a

(c) N → man

(d) N → cat

(e) VP → sleeps
where the start symbol is S, the non-terminal symbols are S, NP, VP, D, N, and the terminal symbols

are every, a, man, cat, sleeps. This grammar generates the strings every man sleeps, every cat sleeps, a man

sleeps and a cat sleeps, by starting with S and rewriting symbols according to these rules until only
terminal symbols remain (we can replace the symbol on the left-hand side of the rule with all the
material on the right-hand side). For instance, the string every man sleeps is derived in the following
way:

S (axiom or start symbol)
NP VP (1)

D N VP (2)
every N VP (a)

every man VP (c)
every man sleeps (e)

We can display this derivation via a parse tree, where a node a above a node b connected to a

denotes that a rule to rewrite a as b is used:

S
�

��

H
HH

NP
�
�

H
H

D

every

N

man

VP

sleeps

10We will not develop on the lambda calculus here. For what follows, it is enough to say that a lambda expression like λx.P(x) denotes
a function that given an x returns true if and only if x is in the set [[P]], which is the denotation of the relation P (the characteristic function
of the set [[P]] denoted by P). If a and b are two expressions, then ab is the application of a to b (b is the argument of a). For instance,
(λx.P(x))(i) is the instantiation of the previous function with the argument i. It is equivalent to P(i): (λx.P(x))(i) reduces to P(i) by
removing the leftmost λx and replacing all occurrences of the variable x bound by that operator with the argument i. Therefore, P(i)

means [[i]] ∈ [[P]]. Lambda expressions can themselves be arguments of other expressions. For instance, (λP.λx.Q(x)∨P(x))(λy.R(y)) =

λx.Q(x)∨ (λy.R(y))(x) = λx.Q(x)∨R(x).

2.3. SEMANTIC REPRESENTATIONS 21

We can then associate semantic representations to terminal symbols and to these rules:11 12

(1) [[S]] = ([[NP]])([[VP]]) when S → NP VP
(2) [[NP]] = ([[D]])([[N]]) when NP → D N
(a) [[every]] = λP∈D〈e,t〉

.λQ∈D〈e,t〉
.every(x,P(x),Q(x))

(b) [[a]] = λP∈D〈e,t〉
.λQ∈D〈e,t〉

.a(x,P(x),Q(x))

(c) [[man]] = λy∈De .man(y)

(d) [[cat]] = λy∈De .cat(y)

(e) [[sleeps]] = λy∈De .sleep(y)
The rules that produce terminals keep the semantics of that word.
The parse tree decorated with semantics for every man sleeps is:

S
(λQ.every(x,man(x),Q(x)))(λy.sleep(y))

= every(x,man(x),(λy.sleep(y))(x))

= every(x,man(x),sleep(x))

�
�

�
�

�
��

H
H

H
H

H
HH

NP
(λP.λQ.every(x,P(x),Q(x)))(λx.man(x))

= λQ.every(x,(λy.man(y))(x),Q(x))

= λQ.every(x,man(x),Q(x))

�
�

�
��

H
H

H
HH

D
λP.λQ.every(x,P(x),Q(x))

every

λP.λQ.every(x,P(x),Q(x))

N
λy.man(y)

man

λy.man(y)

VP
λy.sleep(y)

sleeps

λy.sleep(y)

2.3.3 Minimal Recursion Semantics

Minimal Recursion Semantics (MRS — Copestake et al. (2005)) is a format of semantic representations
that addresses several problems that arise with the composition of semantics. We will mention two
key issues in the following subsections and then present a description of MRS.

Quantifier Scope Ambiguity

A problem with natural language semantics is that there is ambiguity concerning quantifier scope. For
instance, the sentence every man read a book can have the reading every(x,man(x),a(y,book(y),read(x,y)))

11[[x]] means the denotation of x.
12In these examples, De denotes the set of all entities under consideration, and D〈e,t〉 denotes the set of all sets of entities under consider-

ation. λy∈De .man(y) is the characteristic function of the set of men, a function from the set of entities to truth values: given a y that is in De

it yields true just in case y belongs to the set of men.
The semantic types we will use are:

• e (an entity);

• t (a truth value);

• if a and b are semantic types, 〈a,b〉 is also a semantic type, and it is a function from Da (the set of all elements with the semantic
type a) into Db (the set of all elements with the semantic type b).

22 CHAPTER 2. BACKGROUND

as well as a(y,book(y),every(x,man(x),read(x,y))). In the second reading, that there is at least one book
that every man has read (it is the same book for all men; this is the meaning in the context: every man

read a book: the Bible), whereas in the first one, for every man there is at least one book that he has
read (but there does not need to be any specific book read by all men).

We cannot account for quantifier scope ambiguity with lambda expressions alone. Consider the
following extension to our grammar fragment (rule (3) and the lexical entries (f-g) were added) and
the parse tree it generates below for every man read a book:13

(1) S → NP VP [[S]] = ([[NP]])([[VP]])

(2) NP → D N [[NP]] = ([[D]])([[N]])

(3) VP → V NP [[VP]] = ([[V]])([[NP]])

(a) D → every [[every]] = λP∈D〈e,t〉
.λQ∈D〈e,t〉

.every(x,P(x),Q(x))

(b) D → a [[a]] = λP∈D〈e,t〉
.λQ∈D〈e,t〉

.a(x,P(x),Q(x))

(c) N → man [[man]] = λx∈De .man(x)

(d) N → cat [[cat]] = λx∈De .cat(x)

(e) VP → sleeps [[sleeps]] = λx∈De .sleep(x)

(f) N → book [[book]] = λx∈De .book(x)

(g) V → read [[read]] = λQ∈D〈〈e,t〉,t〉
.λx∈De .Q(λy∈De .read(x,y))

S
every(x,man(x),a(y,book(y),read(x,y)))

�
�

�
�

�
�

�
�

�
��

H
H

H
H

H
H

H
H

H
HH

NP
λQ.every(x,man(x),Q(x))

�
�

�
��

H
H

H
HH

D
λP.λQ.every(x,P(x),Q(x))

every

λP.λQ.every(x,P(x),Q(x))

N
λx.man(x)

man

λx.man(x)

VP
λx.a(y,book(y),read(x,y))

�
�

�
�

�
�

��

H
H

H
H

H
H

HH

V
λQ.λx.Q(λy.read(x,y))

read

λQ.λx.Q(λy.read(x,y))

NP
λQ.a(x,book(x),Q(x))

�
�

�
��

H
H

H
HH

D
λP.λQ.a(x,P(x),Q(x))

a

λP.λQ.a(x,P(x),Q(x))

N
λx.book(x)

book

λx.book(x)

This example illustrates that we can only derive one reading. Several methods have been proposed
in the literature to address this problem.

Logical Equivalence

Another problem surfaces with the need to compute logical equivalence. This problem occurs fre-
quently when semantic formulas involve conjunction. Consider the following grammar fragments
for English and Portuguese (we added rule (4) to the previous CFG for English, as well as the termi-
nal symbol in (h); the CFG for Portuguese is parallel to this extension):14

13Here D〈〈e,t〉,t〉 denotes the set of all sets of sets of entities (the denotation of an NP is a set of sets of entities).
14Rule (4) in the Portuguese fragment exemplifies the need to specify the composition of semantics for each rule: the semantic functor

and argument are not predictable from word order.

2.3. SEMANTIC REPRESENTATIONS 23

(1) S → NP VP [[S]] = ([[NP]])([[VP]])

(2) NP → D N [[NP]] = ([[D]])([[N]])

(4) N → AP N [[N]] = ([[AP]])([[N]])

(b) D → a [[a]] = λP.λQ.a(x,P(x),Q(x))

(d) N → cat [[cat]] = λx.cat(x)

(e) V → sleeps [[sleeps]] = λx.sleep(x)

(h) AP → black [[black]] = λP.λx.black(x)∧P(x)

(1) S → NP VP [[S]] = ([[NP]])([[VP]])

(2) NP → D N [[NP]] = ([[D]])([[N]])

(4) N → N AP [[N]] = ([[AP]])([[N]])

(b) D → um [[um]] = λP.λQ.um(x,P(x),Q(x)) “a”
(d) N → gato [[gato]] = λx.gato(x) “cat”
(e) V → dorme [[dorme]] = λx.dormir(x) “sleep”
(h) AP → preto [[preto]] = λP.λx.P(x)∧ preto(x) “black”

Because the semantic representations for adjectives happened to be stated in a different way in
the two grammars (they follow word order, which is different, as depicted in rule (3)), the sentences a

black cat sleeps and um gato preto dorme receive slightly different formulas as translations: a(x,black(x)∧

cat(x),sleep(x)) vs. um(x,gato(x)∧ preto(x),dormir(x)). This is a problem for machine translation based
on semantic representations. The problem can be solved by changing one of the grammars. For
instance, the Portuguese fragment could give the adjective preto the meaning λP.λx.preto(x)∧P(x).
But this means that the two grammars cannot be developed independently of each other. In practice,
it is very difficult to co-ordinate efforts in this way, specially when multiple grammars/languages are
involved.

The two formulas are logically equivalent (by commutativity: P∧Q ≡ Q∧P). But note that logical
equivalence is in the general case undecidable even for first order predicate calculus (Schieber, 1993).

However, it may be necessary to accommodate logical equivalence, at least in a limited way.
Consider the following example. The English grammar could be made more complex in order to
allow for big black cat but block black big cat. The Portuguese grammar would probably want to
allow both gato preto grande and gato grande preto. The last expression would yield λx.(gato(x)∧

grande(x))∧ preto(x) (because the rule (4) in the Portuguese CFG only licenses the syntactic structure
[N [N gatoN grandeAP] pretoAP]), which translates to λx.(cat(x)∧big(x))∧black(x). However, if an ex-
tension of the English grammar blocks black big cat, it would only be able to generate from λx.big(x)∧

(black(x)∧ cat(x)) (the rule (4) in the English CFG licenses the structure [N bigAP [N blackAP catN]]).
This requires computing associativity of conjunction ((P∧Q)∧R ≡ P∧ (Q∧R)), as well as commuta-
tivity.

Brief Description of Minimal Recursion Semantics

MRS addresses these two issues: quantifier scope ambiguity and the necessity to abstract from logical
variants given by commutativity and associativity of conjunction.

MRS allows for the underspecification of scope: a single MRS representation can correspond to
multiple logical formulas that differ in the relative scope among quantifiers. This is desirable because
in several applications scope does not need to be resolved.

For instance, in machine translation, quantifier scope ambiguities can generally be preserved in
the translations that are to be produced.

Furthermore, the number of readings is exponential on the number of scope bearing elements
(Muskens, 1995): quantifiers or other elements, like modals and negation. Therefore, for the sake of

24 CHAPTER 2. BACKGROUND

efficiency, it is preferable to delay or avoid resolving scope whenever possible.
In MRS, conjunction is represented as a bag/multi-set of relations with the same labels (in MRS re-

lations are called elementary predications), which avoids computing associativity and commutativity
variants of conjunction.

Here we provide a simplified and informal description of MRS.
Consider the following two semantic representations for the English sentence All insane men read a

book:15

• every(x, insane(x)∧man(x),a(y,book(y),read(x,y)))

• a(y,book(y),every(x, insane(x)∧man(x),read(x,y)))

To these formulas, we can associate syntactic trees that describe scope relations between their
various non-atomic expressions. For instance, the first formula receives the following tree:

every(x, ,)

�
�

�
��

H
H

H
HH

∧

(,)

�
��

H
HH

insane(x) man(x)

a(y, ,)

�
��

H
HH

book(y) read(x,y)

Here we are representing insane(x)∧man(x) as ∧

(insane(x),man(x)). In MRS, conjunction is not
necessarily binary. Instead, ∧ is generalized conjunction: the number of arguments is arbitrary. The
fact that the node insane(x) is the leftmost daughter of the node with ∧

(,) denotes the fact that insane(x)

is the first argument of ∧

(,).
We can decorate all nodes in this tree with labels. In MRS, these labels are called handles. Every

node is given a different handle with a name of the form hn, where n ≥ 0,16 and prefixed with its
handle and a “:” separating the handle from the formula. Labels can then be used in argument slots
to indicate argument positions:

h1 : every(x,h2,h3)

�
�

�
�

�
��

H
H

H
H

H
HH

h2 : ∧(h4,h5)

�
�

��

H
H

HH

h4 : insane(x) h5 : man(x)

h3 : a(y,h6,h7)

�
�

��

H
H

HH

h6 : book(y) h7 : read(x,y)

With every sub-formula labeled with a handle and every argument position filled with a variable
or a handle, the tree representation is not necessary. We can represent all this information with a pair.
The second member of this pair is a bag/multi-set of elementary predications (an elementary predi-
cation is a relation and its associated handle). The first member of this pair is the handle that labels
the root node (called the global top). The formula under consideration can thus be represented by 〈h1,

{h1 : every(x,h2,h3), h2 : ∧(h4,h5), h3 : a(y,h6,h7), h4 : insane(x), h5 : man(x), h6 : book(y), h7 : read(x,y)} 〉.
We can simplify this representation by adopting the convention that the arguments of the same

conjunction are given identical handles. The new MRS is now 〈h1, {h1 : every(x,h2,h3), h2 : insane(x),

h2 : man(x), h3 : a(y,h4,h5), h4 : book(y), h5 : read(x,y)} 〉. It corresponds to the following tree:
15The generalized quantifier λP.λQ.every(x,P(x),Q(x)) is intended to mean P ⊆ P, and λP.λQ.a(x,P(x),Q(x)) is intended to mean

|P∩Q| > 0.
16It is usual to start at 1, though.

2.3. SEMANTIC REPRESENTATIONS 25

h1 : every(x,h2,h3)

�
�

�
�

�

H
H

H
H

H

h2 : insane(x)

h2 : man(x)

h3 : a(y,h4,h5)

�
�

��

H
H

HH

h4 : book(y) h5 : read(x,y)

We still have different MRSs for different quantifier scope possibilities. Consider the MRS for the
second reading of the same sentence, depicted graphically as a tree:

h3 : a(y,h4,h1)

�
�

�
�

�

H
H

H
H

H

h4 : book(y) h1 : every(x,h2,h5)

�
�

��

H
H

HH

h2 : insane(x)

h2 : man(x)

h5 : read(x,y)

These two trees have the following tree fragments in common:

h1 : every(x,h2, · · ·)

�
��

H
HH

h2 : insane(x)

h2 : man(x)

· · ·

h3 : a(y,h4, · · ·)

�
��

H
HH

h4 : book(y) · · ·

· · ·

h5 : read(x,y)

In order to describe these two scope possibilities with a single MRS we need to allow the situation
in which handles with different names refer to the same syntactic node. The MRS for this sentence
(contemplating both readings) is now 〈h0, { h1 : every(x,h2,h6), h2 : insane(x), h2 : man(x), h3 : a(y,h4,h7),

h4 : book(y), h5 : read(x,y) } 〉. The first reading obtains when h0 = h1, h6 = h3 and h7 = h5. The second
one corresponds to the situation where h0 = h3, h6 = h5 and h7 = h1.

Note that every “hole” must be filled. For instance, it is not possible to set h0 = h1, h2 = h3 and
h4 = h5, as this would leave the quantifiers with no body (their last argument, also called nuclear
scope).

In order to account for some more interesting examples of quantifier scope ambiguity, MRS resorts
to the concept of a qeq relation between handles.17 If hi and h j are in a qeq relation, written hi =q h j,
one of the following must hold in all trees represented by a given MRS: (1) hi and h j are the same
handle; (2) they are different handles, but all nodes in the path between the nodes they label contain
quantifier relations, and the lowest handle is in the body of those quantifiers. An MRS is now a triple:
the top handle, a multi-set of labeled relations and a set of handle constraints (qeq relations).18

The previous example can be written as 〈h0, { h1 : every(x,h2,h6), h2 : insane(x), h2 : man(x), h3 :
a(y,h4,h7), h4 : book(y), h5 : read(x,y) }, {h0 =q h5} 〉. That is, the global top, h0, and the handle that
labels the relation introduced by the verb, h5, are in a qeq relation. This makes it explicit that that
relation cannot occur in the restrictor of a quantifier.

In order to further illustrate the need for qeq constraints, consider the English sentence Every son

of a lion roars and its semantic representations:

17Qeq stands for “equality modulo quantifiers”.
18There are other kinds of relations on handles, but we will not use them in this dissertation, as they are not supported by the systems

where LXGram runs.

26 CHAPTER 2. BACKGROUND

• every(x,a(y, lion(y),son(x,y)),roar(x))

• a(y, lion(y),every(x,son(x,y),roar(x)))

The MRS translations for the quantifiers, as presented so far, do not allow for the underspeci-
fication of quantifier scope in examples like this one, because the handles on the restrictors of the
quantifiers (their first argument if we do not count the bound variable as an argument) are fixed.

We want to say that the restrictor of every “includes” son, but a quantifier may intervene, as
in the first reading, in which case son is in the body of the intervening quantifier. The following
MRS, with qeq constraints between quantifiers and their restrictors, fulfills this requirement: 〈h0,

{h1 : every(x,h2,h3), h4 : son(x,y), h5 : a(y,h6,h7), h8 : lion(y), h9 : roar(x)}, {h0 =q h9,h2 =q h4,h6 =q h8}〉.
The first reading is obtained when h0 = h1,h2 = h5,h6 = h8,h7 = h4,h3 = h9. The second one cor-

responds to the equalities h0 = h5,h6 = h8,h7 = h1,h2 = h4,h3 = h9. The relation corresponding to the
verb, roar, can never appear in the restrictor of a quantifier because its handle is not in a qeq relation
with a handle filling that argument and because roar is not a quantifier relation. It will always be in
the body of the most embedded quantifier. Also, lion cannot be directly in the restrictor position of
every, because it is not a quantifier relation, and the handle labeling lion is not in a qeq relation with the
handle filling the restrictor of every. The relation lion can be in the restrictor position of the quantifier
a, via the equation h6 = h8. Mutatis mutandis, the same is true of son and the quantifier a.

Note that the formula every(x,son(x,y),a(y, lion(y),roar(x))) is blocked simply because the variable
y occurs free in the restrictor of every.

In MRS, every quantifier relation contains a qeq constraint linking that quantifier with its restrictor.
There is no qeq constraint between a quantifier and its body. There is always a qeq constraint between
the global top and the handle of the relation corresponding to the main verb of the sentence associated
to the MRS.

For further details on MRS and a more formal description of this format of describing semantic
representations, see (Copestake et al., 2005).

An example MRS, in the AVM notation, is in Figure 2.1. It is the MRS produced by LXGram for
the Portuguese sentence:

(16) Todos
all

os
the

homens
men

batem
beat

num
on a

burro
donkey

infeliz.
unhappy

All men beat an unhappy donkey.

mrs

LTOP h1 h
INDEX e2 e

RELS

〈

_todo_q_rel
LBL h3 h
ARG0 x6 x
RSTR h5 h
BODY h4 h

,

_homem_n_rel
LBL h7 h
ARG0 x6

,

_bater_v_-em-_rel
LBL h8

ARG0 e2

ARG1 x6

ARG2 x9 x

,

_um_q_rel
LBL h10 h
ARG0 x9

RSTR h12 h
BODY h11 h

,

_burro_n_rel
LBL h13 h
ARG0 x9

,

_infeliz_a_rel
LBL h13

ARG0 e14 e
ARG1 x9

〉

HCONS

〈

qeq
HARG h1

LARG h8

,

qeq
HARG h5

LARG h7

,

qeq
HARG h12

LARG h13

〉

Figure 2.1: Example MRS. The sentence is todos os homens batem num burro infeliz (all men beat an unhappy
donkey).

This MRS describes the two propositions:

2.3. SEMANTIC REPRESENTATIONS 27

_um_q(x9, _burro_n(x9)∧_infeliz_a(e14,x9),

_todo_q(x6,_homem_n(x6),

_bater_v_-em-(e2,x6,x9)))

_todo_q(x6, _homem_n(x6),

_um_q(x9,_burro_n(x9)∧ _infeliz_a(e14,x9),

_bater_v_-em-(e2,x6,x9)))

This example follows the conventions for the names of predicates in MRS. Predicate names start
with an underscore if they are related to a lexical item. They include several fields separated by
underscores: the lexical item’s lemma, a single character denoting its part-of-speech (n for nouns, v

for verbs, etc.: e.g. this allows for a straightforward differentiation between the relations associated
with the English noun fly and the verb fly, which are radically different concepts), an optional field for
word sense distinctions that can include prepositions of subcategorized complements (in LXGram we
put hyphens around prepositions, in order to easily distinguish between the part-of-speech field with
the value a, for adjectives, and the preposition a), and the suffix rel, which is omitted in scope-resolved
formulas. In MRS, variables over entities start with an x followed by an integer.

The _um_q relation is meant to express the existential generalized quantifier, and _todo_q the uni-
versal generalized quantifier. The two readings correspond to the two different scope possibilities be-
tween the two quantifiers, i.e. in the first reading there is a single donkey beaten by all men, whereas
the second reading can be true if different men beat different donkeys.

In the AVM, the feature LTOP denotes the global top, the feature RELS is the bag of elementary
predications, and HCONS is the set of handle constraints. RELS and HCONS are implemented as differ-
ence lists, but the LKB MRS display presents them as lists. In the feature structures for relations, LBL

is the associated handle, RSTR is the restrictor argument of a quantifier, and BODY is its nuclear scope.
The remaining arguments are given by ARGn, with n ≥ 0. In the feature structures for qeq constraints,
HARG is the left operand (the higher handle), and LARG is the second operand (the lower handle).

A note on MRSs concerns the standard practice of using event arguments. For instance, the rela-
tion associated with the verb in the previous example has as its first argument an event represented
by e2 in that example. Event variables are considered to be implicitly existentially quantified. Its use
is inspired in the work of Davidson (see e.g. (Davidson, 1980)). Event variables are useful in order
to represent intersective modifiers of verbs. For instance, the verb chegar (arrive) is given semantics
equivalent to λx2._chegar_v(e1,x2). The phrase chegar hoje (to arrive today) is associated with the se-
mantics λx2._chegar_v(e1,x2)∧ _ho je_a(e3,e1), which is supposed to mean that there is an event of
arriving and that event takes place during the time interval denoted by the word hoje (today). The
event associated with the verb (its first argument) provides an argument for the relation associated
with the adverb in this example. Events should not be confused with the semantic type e (for entities).
In MRSs, variables over entities appear with the type x, and events with the type e.

The MRS display provided by the LKB (similar to the MRS in Figure 2.1) presents relation names
as if they were types of relations. In the feature structures manipulated by the grammar, they are not
types of relations, but rather the values of a feature PRED present in all relations and omitted in these
MRS displays. This feature PRED takes strings as values. For instance, the feature structure for the
relation _burro_n_rel manipulated by the grammar is actually:

noun-relation
LBL handle
PRED “_burro_n_rel”
ARG0 ref-index

28 CHAPTER 2. BACKGROUND

where noun-relation is a type for which the features just presented are appropriate, and where they
are constrained with the types displayed above.

Similarly, the type names that appear in the MRS displays produced by the LKB are also cosmetic.
The type for variables over entities is x in MRSs but the real type name in LXGram is ref-index (for
referential index). The type for handles is handle but appears in MRS representations as h, and event
appears as e. The mapping between the grammar types and the MRS types is specified in a configu-
ration file.

Since in MRS conjunction is denoted by two or more elementary predications having the same
label, the computation of commutativity and associativity of conjunction is reduced to testing for
multi-set equality. For instance, a grammar for English would produce an MRS for the corresponding
English sentence where the relations corresponding to _burro_n and _infeliz_a would appear in the
reverse order (the MRSs become more readable if they follow word order). The two MRSs, the one
presented and the hypothetical MRS for the corresponding English sentence, would nonetheless be
equivalent modulo relation names, but in order to match them it is not necessary to produce logical
equivalents, but only to compare multi-sets. Note that since conjunction is not represented by a binary
operator, associativity is not even an issue: the MRS representation of conjunction is generalized
conjunction.

The LKB comes with the functionality of generating scope resolved formulas from MRS represen-
tations, under request. The LKB also contains very efficient algorithms for the generation from MRS
representations (Carroll et al., 1999; Carroll and Oepen, 2005).

MRS is not the only format of semantic description that allows underspecification of quantifier
scope. For instance, Underspecified Discourse Representation Theory (Reyle, 1993) and Hole Seman-
tics (Bos, 1996) explore the same idea. Other approaches include those of Alshawi and Crouch (1992),
Egg et al. (2001) and Poesio (1994), among others.

2.4 Strong Lexicalism

HPSG is heavily lexical. That is, a large amount of information is encoded in the feature structures
associated with the words in the lexicon. Syntactic rules are very general and just combine words
according to the lexical stipulations associated with them.

In LXGram a typical lexical entry consists of an identifier for that entry, a lexical type, a string that
describes the orthographic form of that item, and the value of the feature PRED, which encodes the
name of the semantic relation for that item.

All the constraints associated with that item are given by the lexical type. Lexical types are, like
all other types, organized in an inheritance hierarchy.

The type hierarchy for lexical types is, like in the other computational HPSGs, extremely large
(with hundreds or thousands of types), since the lexical leaf types (the ones used in the lexical en-
tries) must be cross-classified in several dimensions, taking advantage of multiple inheritance. For
this reason, in this text we will not present the names of the lexical types used and just present the
constraints associated with these types. Some of these constraints will appear in several items. In
LXGram, constraints common to many items are usually defined in abstract lexical types from which
many lexical types inherit.

For instance, the lexical entry for the noun carro (car) in LXGram looks like the following:

2.5. SOME PROPERTIES OF THE FORMALISM IN THE LKB AND PET 29

carro :=

noun-common-masc-count-0comps-lex &

[STEM < "carro" >,

SYNSEM.LOCAL.CONT.KEYS.KEY.PRED "_carro_n_rel"].

The lexical type contains the constraints that define this noun as a common noun with masculine
grammatical gender that is a count noun and has no complements. This type also defines the SYNSEM

|LOCAL|CONT|RELS attribute, where the bag of relations associated with this item is defined, to be
singleton, and unifies its single element with SYNSEM|LOCAL|CONT|KEYS|KEY. This is the path used in
lexical entries to access the relation associated to a word, as in this example. STEM is the feature that
has been presented above as ORTH.

2.5 Some Properties of the Formalism in the LKB and PET

Here we present some properties of the logic of typed feature structures assumed by the LKB and
PET, focusing on those that are relevant to the subsequent discussion in this dissertation.

• Open-world semantics The LKB and PET follow an open-world semantics, because not all the
conditions required by a closed-world semantics are satisfied.

Under a closed-world semantics, the objects that can interpret feature structures are completely
defined by the type hierarchy. A logic of typed feature structures is considered to have a closed-
world semantics if it satisfies the two following properties (in the systems used here the second
one is enforced, but not the first one).

– The partition condition Consider the example of t having exactly two subtypes s and u:

s

t

u

The partition condition says that all objects of type t are either of type s or type u.19 Con-
sider the case where the features F and G are appropriate for type t and boolean,20 and
constrained in s and u in the following way:

t

F bool
G bool

s

F +

G −

u

F −

G +

There are two consequences. The first is that the following instance is illicit, because it is
incompatible with both s and u.

t

F +
G +

19Obviously, it generalizes to any number of subtypes.
20As in the LinGO Grammar Matrix, we use + and - as the only subtypes of bool, where the first denotes truth and the second falsity. See

Section 2.6.

30 CHAPTER 2. BACKGROUND

This interpretation of the type hierarchy is sometimes called exhaustive typing.
The second consequence is that e.g. an instance of type t with F of type + is inferred
to be of type s, since it is incompatible with u. The kind of inference whereby an object
of a type is automatically “demoted” to one of its subtypes in virtue of having constraints
incompatible with all other subtypes is sometimes called subtype covering (e.g. in (Melnik,
2005)).
Recall that the extension of a type is a superset of the union of the extensions of all its
subtypes. The partition condition means that we consider that the extension of a type is
exactly this union (it is a superset, but not a proper superset of that union): it cannot contain
elements that are not in the extension of one of its subtypes.21

This partition condition is not respected in the LKB or PET: neither exhaustive typing nor
subtype covering are performed.

– The disjoint species condition If two types τ and σ do not have a common subtype υ (such
that υ v τ ∧υ v σ , and υ is not required to be different from τ and σ), then τ u σ = ⊥,
i.e. nothing can be simultaneously of type τ and of type σ . The result of unification is
completely determined by the inheritance hierarchy, and unification results in failure if its
two operands do not have a common subtype defined there.
The disjoint species condition means that the extensions of species (species are types that
have no subtypes) are all disjoint.

• Total well-typedness The LKB and PET require the feature structures that are manipulated to be
totally well-typed in the sense of Carpenter (1992). A feature structure is totally well-typed if it
is well-typed and satisfies additional properties.

A feature structure s of type τ is well-typed if all features under s are defined for τ and their
value in s is subsumed by the value declared in τ for those features.

For instance, given the following hierarchy and constraints:

>

�
�

��

H
H

HH

τ
F σ

σ υ

the following instances are not well-typed:

τ
F υ

τ
G >

The instance on the left is not well-typed because it presents a value for the feature F , υ , that
is incompatible with the type that this feature is constrained to be of in the definition of τ , σ
(according to the hierarchy, there is no unifier for σ and υ , so the structure cannot be made
well-typed).22 The structure on the right is also not well-typed, since it has a feature G that is

21Drawing a parallel with object-oriented programming languages, it means that all our types that have subtypes are like abstract classes
or interfaces there.

22If there was an additional type, say π, defined as a subtype of both σ and υ , this instance would be well-typed and equivalent to one
where F is of type π, as π would be the unifier of υ and σ .

2.5. SOME PROPERTIES OF THE FORMALISM IN THE LKB AND PET 31

not declared in τ to be appropriate for instances of this type.23

Furthermore, the constraints on a type have to be compatible with the constraints on all their
supertypes. Resuming our example, a subtype ρ of τ cannot redefine the feature F to be of the
type υ , as υ and σ are incompatible.24

A feature structure s of type τ is totally well-typed if it is well-typed and all features declared
appropriate for τ are present in s. Type expansion is performed by the system in order to add
features that are not stated explicitly.

Consider the following hierarchy:

b

a

c

d

and assume that the types a, b and c are atomic (they have no features), but type d is declared as:

d
F a

Then the unifier of b and c is a feature structure of type d. For it to be totally well-typed, the
feature F has to be added (type expansion), since all instances of d must have this feature:

bu c =

d
F a

Total well-typedness makes definitions like the following of infinite size after type expansion
(but they are detectable statically and generate an error):

person
FATHER person

A type cannot be defined to have a feature that is of that same type or more specific, because
total well-typedness requires all features appropriate for a type to be present in all instances of
that type. In this example, another feature FATHER would have to be present embedded under
the topmost FATHER attribute, because it is of type person, which, according to this definition has
a feature FATHER. But this second feature would be of the same type person, so a third feature
FATHER would have to be added, and so on. Of course, recursive structures can still be obtained
by declaring features to be of a type that is more abstract than, but still compatible with, the type

23If the hierarchy included a subtype of τ for which the feature G is defined, say the subtype ρ , then this instance would be made well-
typed by inferring that it is not only an instance of τ but also an instance of ρ (see the Feature Introduction Condition and Type Inference
below.)

24However, the LKB supports defaults (PET does not yet). If the constraint on the type of F is declared to be a default constraint
(overridable) in τ , then a subtype can define an incompatible value for this feature. As mentioned before, we will not use defaults in this
dissertation.

32 CHAPTER 2. BACKGROUND

where they are declared. For instance, the following serves the same purpose and is totally well-
typed (the type adam-or-lilith-or-eve is not required, because the LKB and PET do not perform
subtype covering):

person

�
�

�
�

�
��

H
H

H
H

H
HH

person-not-adam-not-lilith-not-eve
FATHER person

adam-or-lilith-or-eve

• The feature introduction condition (FIC) For each feature f , there has to be a single most general
type for which f is appropriate. For instance, the hierarchy on the left does not respect the FIC,
but the one on the right does:

>

σ

�
�

�

H
H

H

τ
F bool

υ
F bool

>

σ
F bool

�
�

�

H
H

H

τ
F bool

υ
F bool

This essentially means that all feature names must be unique, except for the features that are
inherited. More precisely, there is a function, say Approp, that for each feature returns the most
general type for which it is appropriate; with the hierarchy on the left, it is not possible to
determine whether Approp(F) = τ or Approp(F) = υ ; with the one on the right, Approp(F) = σ .

• Type inference The kind of type inference of (Carpenter, 1992) is supported by the LKB and PET.
It is made possible by enforcing the FIC. For instance, given a type hierarchy containing the
hierarchy above on the right, the feature A can be inferred to be of the type σ in the following
feature structure, because σ is the most general type for which F is appropriate:

[

A|F +
]

This allows the omission of the types of many features in instances. Note that the type hierarchy
must still be fully described in the source.

Type inference interacts with total well-typedness. Suppose that another feature G is declared
appropriate for σ , and its type is also bool, so that it now has two features, F and G, and σ is still
the most general type for which F is appropriate. Then, with type inference and type expansion,

2.5. SOME PROPERTIES OF THE FORMALISM IN THE LKB AND PET 33

the previous feature structure ([A|F +]) is actually the same as:

A

σ
F +
G bool

• Cyclicity The LKB and PET forbid cyclic structures. For instance, the following familiar con-
struction cannot be implemented exactly as shown, because there would be a cycle in it (i.e. the
structure corresponds to the cyclic graph presented below).

head-specifier-phrase

HEAD-DTR|SYNSEM 1

[

LOCAL|CAT|VAL|SPR
〈

2
〉

]

NON-HEAD-DTR|SYNSEM 2

[

LOCAL|CAT|HEAD|SPEC
〈

1
〉

]

local cat
CAT

local cat
CAT

val
VAL

head
HEAD

sign

signHEAD-DTR

sign

NON-HEAD-DTR

synsem
SYNSEM

synsem
SYNSEM

LOCAL

LOCAL

cons

FIRST

null
REST

cons

FIRST

null
REST

SPR

SPEC

Feature structures in the LKB and PET are directed acyclic graphs.

• Greatest lower bound (most general unifier) Consider the following hierarchy:

c

a b

d

It is not possible to determine a single result for the unification of a and b: both c and d qualify.
The two are lower bounds for a and b, but none of c and d is more general than the other. There
must be a single greatest lower bound for every pair of compatible types in a hierarchy, in order
to guarantee that unification is deterministic.

If the T DL code describes hierarchies with this shape, automatic types are created by the LKB
and PET with names that start with the string glbtype, followed by an integer. The result of
loading in the LKB a grammar defining a hierarchy like the one just presented might make it

34 CHAPTER 2. BACKGROUND

look like:

glbtype1

a b

c d

In the example above, the unification of a and b is something that can be a c or a d, hence a
member of the union of the extensions of c and d. Supertypes denote set union, and in that
example the glbtype that is created by the system denotes just the union of the extensions of c
and d.

Disjunction and negation are not supported in the LKB and PET, and neither are sets or operations
on sets and lists, such as testing for membership or computing set union or list appends. Arbitrary
functions cannot be defined either. These limitations make LKB and PET extremely fast in parsing and
generation when compared with similar systems.25 However, the effects of disjunction and negation
can be achieved by the type hierarchy alone, and some of these collections and operations on them
can be implemented by manipulating typed feature structures directly (see Section 2.6).

2.6 Important Types and Mechanisms Defined in the LinGO Grammar

Matrix

LXGram was implemented by taking the LinGO Grammar Matrix code as its base, and developing
upon it. The LinGO Grammar Matrix (Bender et al., 2002) is an open-source package where the funda-
mental types and features used in HPSGs are already defined. It covers several linguistic phenomena.
For the phenomena covered, it provides several abstract types whose definitions can be combined by
creating subtypes and taking advantage of multiple inheritance, according to the properties of the
natural language that is to be modeled.

In this section we present some types that are defined in the LinGO Grammar Matrix and will be
referred to in this dissertation.

Boolean types are given by the hierarchy under bool, where the descendant + means true and -
means false:

+

bool

-

Lists are defined recursively in the usual way. Type null is the empty list, cons is a non-empty list:

null

list

cons
25Penn (2004) mentions that the ERG, running in the LKB, is 300 times faster than MERGE, a similar grammar developed in TRALE,

another typed feature platform that allows for these operations.

2.6. IMPORTANT TYPES AND MECHANISMS DEFINED IN THE LINGO GRAMMAR MATRIX 35

In non-empty lists, the feature FIRST points to the head of the list, and the attribute REST has the
tail of the list as its value and is declared to be of the type list. Non-empty lists are implemented by
the type cons, with the constraints:

cons
FIRST *top*
REST list

where *top* is >, the most general type. Types list and null are atomic: they have no features.
The T DL notation < · · · , · · · > is an abbreviation for lists. The empty list can be represented by

< >. The following two are equivalent:
[

F
〈

a, b
〉

]

F

cons
FIRST a

REST

cons
FIRST b
REST null

Difference lists are a way to implement collections with an append operation that is computation-
ally cheap. They do not have the semantics of sets in that they allow repeated elements and their
elements are ordered, but they are used to implement sets, because the most frequent operation on
sets for our purposes, set union, can be mimicked efficiently with appends done via difference lists.
Difference lists resemble linked lists, with two features pointing to the beginning and the end:

diff-list
LIST list
LAST list

An empty difference list is simply one where both features are unified:

diff-list
LIST 1 list
LAST 1

They are not constrained to be empty lists (null), though.
A non-empty difference list has the most embedded REST of the list in LIST unified with LAST. In

this case the most embedded REST is not constrained to be an empty list. The following is a difference
list with two elements, a and b:

diff-list

LIST

cons
FIRST a

REST

cons
FIRST b
REST 1 list

LAST 1

36 CHAPTER 2. BACKGROUND

There is a T DL shorthand notation for difference lists: <! · · · , · · · !>. The empty difference list it
<! !>.

The following constraints implement different list appends. The difference list append of A and B

is C:

A

LIST 1 list
LAST 2 list

B

LIST 2

LAST 3 list

C

LIST 1

LAST 3

The following example illustrates the append of <! c, d !> to <! a, b !>:

A

LIST 1

cons
FIRST a

REST

cons
FIRST b
REST 2 list

LAST 2

B

LIST 2

LAST 3 list

C

LIST 1

LAST 3

u

A

LIST 1 list
LAST 2

B

LIST 2

cons
FIRST c

REST

cons
FIRST d
REST 3 list

LAST 3

C

LIST 1

LAST 3

=

A

LIST 1

cons
FIRST a

REST

cons
FIRST b

REST 2

cons
FIRST c

REST

cons
FIRST d
REST 3 list

LAST 2

B

LIST 2

LAST 3

C

LIST 1

LAST 3

Note that, under the attribute C, the feature LAST points to the most embedded tail under LIST, as
desired.

We will use the notation of sets for difference lists in this thesis, largely for convenience. Therefore
{· · · , · · · } can be viewed as notation for difference lists.

The basic feature geometry of the HPSG sign (a word or a phrase), is implemented in the LinGO
Grammar Matrix in a way that replicates the usual organization of these features in HPSG:

2.6. IMPORTANT TYPES AND MECHANISMS DEFINED IN THE LINGO GRAMMAR MATRIX 37

SYNSEM

LOCAL

CAT

HEAD head

VAL

SUBJ list
SPR list
COMPS list

CONT

HOOK

LTOP handle
INDEX individual

RELS diff-list
HCONS diff-list

NON-LOCAL

SLASH diff-list
QUE diff-list
REL diff-list

The features under SYNSEM contain syntactic and semantic information about the syntactic node
represented by this instance. The features under CAT describe syntactic information. The attribute
HEAD is of type head,26 which has subtypes like noun and verb. It denotes the sort of head of a phrase,
abstracting from saturation of arguments: nouns, N s and noun phrases all have a HEAD of type noun;
verbs, verb phrases and sentences all have a HEAD of type verb, etc. The valence features under VAL

— SUBJ, SPR and COMPS — encode information about the syntactic arguments of a word or phrase.
These lists are lists of SYNSEM objects, and therefore all information that can be selected for by a word
must be under SYNSEM. They take the empty list as value for words that do not have the relevant
argument or for phrases where that argument has already been discharged.

The features under CONT contain information about semantics. The attributes RELS and HCONS

contain the MRS information, and HOOK contains information that is used for the composition of
semantics (they are our lambdas). The type individual is the supertype of ref-index (for variables over
entities) and event (for events). More information about composition of semantics with MRS is in
Section 3.4.2.

The features under NON-LOCAL are used for the treatment of long distance dependencies. We will
not be concerned with the linguistic phenomenon of unbounded dependencies in this dissertation.

Other important types in the LinGO Grammar Matrix are the ones for the feature SYNSEM. We
present a version of the hierarchy, simplified in that only the types mentioned in the dissertation are
presented. It is in Figure 2.2.27

The Principle of Canonicality (Ginzburg and Sag, 2000) (all projected constituents have a SYNSEM

of type canonical-synsem) is enforced by constraints on the types for phrases that force all realized ele-
ments to have SYNSEM of type canonical-synsem. The two subtypes of canonical-synsem in the hierarchy
in Figure 2.2, lex-synsem and phrase-synsem, are the types of the SYNSEMs of words and phrases respec-
tively. That is, the type word, the subtype of sign from which all lexical types inherit, has its SYNSEM

constrained to be of type lex-synsem, and similarly for phrases.
It follows from the Principle of Canonicality that elements with a SYNSEM of a type subsumed

by non-canonical-synsem cannot be realized, since there is no unifier for canonical-synsem and non-
canonical-synsem according to the hierarchy in Figure 2.2.

26The type it is declared to be in the LinGO Grammar Matrix is actually called head-min.
27Some types in this figure have names slightly different from their names in the LinGO Grammar Matrix. For instance, the type

unexpressed-synsem is actually called unexpressed in the LinGO Grammar Matrix, and phrase-synsem is named phr-synsem.

38 CHAPTER 2. BACKGROUND

non-canonical-synsem

synsem

expressed-synsem

canonical-synsem gap unexpressed-synsem

lex-synsem phrase-synsem

Figure 2.2: Simplified hierarchy of types for SYNSEM objects.

cons

list

nullsynsem-list

synsem-cons synsem-nullolist

ocons onull

Figure 2.3: Hierarchy of list types.

Type gap is used for the treatment of long distant dependencies, whereas unexpressed-synsem is
for elements that are not realized either locally or non-locally, e.g. null arguments. For instance,
complements with a synsem of a type unifiable with unexpressed-synsem are thus optional; obligatory
ones are constrained to be incompatible with unexpressed-synsem.28 Since obligatory complements can
nevertheless be extracted, gap inherits from expressed-synsem.

An important set of types is the one for lists of unexpressed-synsems. Since the LKB lacks param-
eterized/generic types, one has to create subtypes of list in order to enforce the type of the elements
of a list. The hierarchy in Figure 2.3 allows constraining a list to have all elements of type synsem or
unexpressed-synsem.

The types list, null and cons are the ones presented before for lists in general.
Type synsem-list represents a list of synsems. One of its specialized types, synsem-cons, includes

additional constraints:

synsem-cons
FIRST synsem
REST synsem-list

The types synsem-list and synsem-null have no constraints.

28In the Matrix, a feature OPT is used to this end, but it is not required, the type hierarchy being enough: obligatory arguments can be
specified to have a SYNSEM of type expressed-synsem.

2.6. IMPORTANT TYPES AND MECHANISMS DEFINED IN THE LINGO GRAMMAR MATRIX 39

Finally, olists are lists of “unexpressed” elements:

ocons
FIRST unexpressed-synsem
REST olist

The types olist and onull have no constraints.

Although the LinGO Grammar Matrix includes type olist, no synsem-list is given. It is an addition
in LXGram that allows more type checking at grammar compile/load time.29

An interesting property of olist is that it can often be used to constrain lists like COMPS instead of
requiring them to be empty (see (Flickinger, 2000), where this list type is called optlist). For instance, if
subjects are projected higher in a tree than complements, it is usual to constrain the head daughter of
Head-Subject constructions to have an empty COMPS list. This rules out the tree on the left and allows
for the one on the right:30

S

head-comp-phrase

SS|LOC|CAT|VAL

SUBJ 〈〉

COMPS 〈〉

�
�

�
�

�
�

�
�

H
H

H
H

H
H

H
H

S/NP

head-subj-phrase

SS|LOC|CAT|VAL

SUBJ 〈〉

COMPS
〈

1
〉

�
�

�
�

��

H
H

H
H

HH

NP
[

SS 1
]

Eles

they

V

SS|LOC|CAT|VAL

SUBJ
〈

1
〉

COMPS
〈

2
〉

bebem

drink

NP
[

SS 2
]

água

water

S

head-subj-phrase

SS|LOC|CAT|VAL

SUBJ 〈〉

COMPS 〈〉

�
�

�
�

�
�

�
�

H
H

H
H

H
H

H
H

NP
[

SS 1
]

Eles

they

VP

head-comp-phrase

SS|LOC|CAT|VAL

SUBJ
〈

1
〉

COMPS 〈〉

�
�

�
�

��

H
H

H
H

HH

V

SS|LOC|CAT|VAL

SUBJ
〈

1
〉

COMPS
〈

2
〉

bebem

drink

NP
[

SS 2
]

água

water

If olist is used to constrain the COMPS of Head-Subject constructions instead, the same structure ob-
tains (the one on the right). The relevant constraints of Head-Subject and Head-Complement phrases
are the following:

29This is useful because several features are lists of synsems, like SUBJ or COMPS, while others are lists of signs, like ARGS (which can
also be typed similarly).

30Here, SS abbreviates SYNSEM, and LOC abbreviates LOCAL.

40 CHAPTER 2. BACKGROUND

head-subj-phrase

SYNSEM|LOCAL|CAT|VAL

SUBJ 〈〉

COMPS 1 olist

HEAD-DTR 4

SYNSEM

canonical-synsem

LOCAL|CAT|VAL

SUBJ
〈

2
〉

COMPS 1

NON-HEAD-DTR 3
[

SYNSEM 2 canonical-synsem
]

ARGS
〈

3 , 4
〉

head-comp-phrase

SYNSEM|LOCAL|CAT|VAL

SUBJ 1

COMPS 2

HEAD-DTR 4

SYNSEM

canonical-synsem

LOCAL|CAT|VAL

SUBJ 1

COMPS

FIRST 3

REST 2

NON-HEAD-DTR 5
[

SYNSEM 3 canonical-synsem
]

ARGS
〈

4 , 5
〉

Types olist and null (null is the tail of a singleton list, percolated from the head daughter in Head-
Complement constructions) unify to onull, as can be seen in the hierarchy in Figure 2.3, which allows
the analysis on the right.

The analysis on the left is blocked by the interaction with the Principle of Canonicality: unexpressed-
synsem does not unify with canonical-synsem. Note that the type of COMPS of the head daughter of
head-comp-phrase is inferred to be cons, because it is the most general type for which the features FIRST

and REST are appropriate (it is actually synsem-cons if COMPS is declared to be of type synsem-list, since
the most general unifier of synsem-list and cons is synsem-cons). A head-subj-phrase cannot be the head
daughter of a head-comp-phrase: since head-subj-phrase constrains its COMPS to be an olist, it would be an
ocons, the most general unifier for olist and cons (or synsem-cons), which constrains its elements to be
unexpressed-synsems. But head-comp-phrase requires the first element of the COMPS of its head daughter
to be a canonical-synsem, which does not unify with unexpressed-synsem.

The advantage of using olist instead of null is that if the complement is not realized, it does not
have to be removed from COMPS by another rule:31

31There are complications when there are multiple complements and an optional complement precedes another complement, but they
need not concern us here. See (Flickinger, 2000) for a possible solution.

2.7. SUMMARY 41

S

head-subj-phrase

SYNSEM

phrase-synsem

LOCAL|CAT|VAL

SUBJ 〈〉

COMPS 1

ocons
FIRST unexpressed-synsem
REST onull

�
�

�
�

�
�

�
��

H
H

H
H

H
H

H
HH

NP
[

SYNSEM 2 lex-synsem
]

Eles

they

VP

SYNSEM

lex-synsem

LOCAL|CAT|VAL

SUBJ
〈

2
〉

COMPS 1

bebem

drink

2.7 Summary

We described Head-Driven Phrase Structure Grammar, which is employed in LXGram and will be
used in the discussion in the following chapters. HPSG is a grammatical framework that is suited
to computational implementations, since its fundamental mechanisms are shared with programming
languages. We reviewed several of these aspects, like the type system, has-a relations, and unification.
We presented the specific properties of the formalism as it is accepted by the systems where LXGram
is implemented, like the Feature Introduction Condition and type inference.

The mechanism used to compose sentential semantics from the basic meanings of words was de-
scribed. In the original approach, lambda expressions are given as the meaning of words and semantic
rules, where argument and functor are specified, are associated to the syntactic rules of a context free
grammar. The way the semantics is composed in HPSG is very similar. Here we will use Minimal
Recursion Semantics instead of the lambda calculus for this purpose, but the idea is fundamentally
the same. MRS is used in several unification grammars, as it addresses some of the shortcomings
of the lambda calculus in the composition of semantics, in particular efficiency ones. MRS was con-
ceived with computational efficiency in mind. For instance, since it allows for underspecification
of quantifier scope, it avoids generating multiple analyses for sentences that are ambiguous in this
respect.

Finally, we presented some of the types and features that are defined in the LinGO Grammar
Matrix and will be referred to in the rest of this dissertation. We also took this opportunity to present
the mostly used attributes and types of HPSG.

The use of structured information allows for very general rules in HPSG, that just combine in-
formation coming from the daughters. Ultimately, the relevant information comes from constraints
on lexical items (terminal symbols). HPSG is strongly lexicalized. Syntax rules and their associated
constraints for the composition of semantics are very general. We provided brief illustrations of some
important syntax rules of HPSG.

42 CHAPTER 2. BACKGROUND

3
Functors

3.1 Overview

This chapter begins with a brief review and illustration of the various syntactic relations that have
been considered in the HPSG literature as holding between syntactic constituents.

We present the repertoire of syntactic relations that is used in LXGram, which contains an exten-
sion with respect to standard HPSG. The motivation for that extension is discussed, as well as the
types and features that will be involved in the architecture thus obtained. This architecture will be
employed in the analyses to be worked out in the remaining chapters.

3.2 Syntactic Relations in HPSG

In (Pollard and Sag, 1994), the syntactic relations that hold between two syntactic constituents are
Head-Specifier, Head-Subject, Head-Complement, Head-Adjunct and Head-Marker. Figure 3.1 shows
an example sentence with these relations identified.

The tendency since then has been to reduce this inventory. In (Sag et al., 2003) they are Head-
Specifier, Head-Complement and Head-Adjunct, with the previous Head-Subject configurations con-
sidered instances of Head-Specifier relations and the former Head-Marker constructions as instances
of Head-Complement configurations. Figure 3.2 presents these relations for the same sentence.

In the LinGO Grammar Matrix, four configurations are employed: Head-Specifier, Head-Subject,
Head-Complement and Head-Adjunct. This is also true of many computational HPSGs (e.g. the
LinGO English Resource Grammar, the German Grammar or Jacy). Figure 3.3 exemplifies them.

The work of Allegranza (1998a,b) and Van Eynde (2003a,b) proposes a reduction in a different
way: specifiers, adjuncts and markers are merged into the category functor. In this system the config-
urations are the ones in Figure 3.4.

In LXGram we adapted the LinGO Grammar Matrix so as to use subjects, functors (merging of

SSJ H

NP VPH C

I V SM H

know C SSJ H

that NPSP H VP

D NA H barks

the A N

brown dog

Figure 3.1: Syntactic relations in (Pollard and Sag, 1994). H denotes a head, SJ denotes a subject, SP a specifier,
C a complement, A an adjunct and M a marker.

43

44 CHAPTER 3. FUNCTORS

SSP H

NP VPH C

I V CPH C

know C SSP H

that NPSP H VP

D NA H barks

the A N

brown dog

Figure 3.2: Syntactic relations in (Sag et al., 2003). H denotes a head, SP a specifier, C a complement and A an
adjunct.

SSJ H

NP VPH C

I V CPH C

know C SSJ H

that NPSP H VP

D NA H barks

the A N

brown dog

Figure 3.3: Syntactic relations in the LinGO Grammar Matrix. H denotes a head, SJ denotes a subject, SP a
specifier, C a complement and A an adjunct.

SSJ H

NP VPH C

I V SF H

know C SSJ H

that NPF H VP

D NF H barks

the A N

brown dog

Figure 3.4: Syntactic relations in (Van Eynde, 2003b). H denotes a head, SJ denotes a subject, C a complement
and F a functor.

3.2. SYNTACTIC RELATIONS IN HPSG 45

SSJ H

NP VPH C

I V CPH C

know C SSJ H

that NPF H VP

D NF H barks

the A N

brown dog

Figure 3.5: Syntactic relations in LXGram. H denotes a head, SJ denotes a subject, C a complement and F a
functor.

specifiers and adjuncts) and complements, but we are treating Head-Marker constructions as Head-
Complement constructions, like Sag et al. (2003), as depicted in Figure 3.5.

The implementation of Head-Functor configurations in LXGram is presented in the following Sec-
tions.

Within HPSG there are different approaches also with respect to the status of NPs, since the DP
hypothesis (according to which NPs are rather DPs, i.e. the head of an NP is the determiner and
not the noun, the sister node of the determiner being its complement) is followed in some work (e.g.
Beavers (2003b)). In LXGram and here, we will treat these phrases as NPs and accordingly consider
the noun to be the head.

The inventory of syntactic relations used has implications in the general feature geometry of the
grammars. Different relations are implemented via different features in the lexical entries, and syn-
tactic rules look at them in order to produce phrasal constituents. Therefore, the number and nature
of the relations considered have an impact on the number of syntactic rules necessary in a grammar,
as well as on the number of features.

With the conceptual organization of Pollard and Sag (1994), the features SUBJ (where the subject
of a head is stated), COMPS (the complements of a head), SPR (the specifier of a head), SPEC (the head
of a specifier), MOD (the head of an adjunct) and MARKING (for markers) are necessary. Five schemata
are also required to project subjects, complements, specifiers, adjuncts and markers, because selection
information is found in different attributes.

3.2.1 Motivation for Functors

Before explaining the functor architecture (in the following sections), we provide some motivation in
favor of it.

Within the NP domain, the status of several constituent items challenge a sharp divide between
specifiers and adjuncts and therefore the full relevance of those notions. We will look at possessives
as an example.

Possessives have specifier-like properties. Since they cannot iterate, the combinatorial potential of
a possessive plus noun sequence is different from that of a noun, because the former cannot further
combine with a possessive to its left. Also, possessives can realize an argument of the head noun, as
in the expression meu pai (my father). So it seems natural to encode them in a valence feature of nouns.

There are two possibilities: to use a valence list that already exists, or to create a separate attribute
for possessives. If the first possibility is considered, the best candidate is the feature SPR, since in
many contexts possessives precede the head.

46 CHAPTER 3. FUNCTORS

But in Portuguese possessives co-occur with determiners, as in (17).

(17) a. o
the

meu
my

pai
father

my father
b. * meu

my
o
the

pai
father

The consequence is that SPR should have more than one element. Since we only have access to
the heads of lists (not to e.g. their last element), and the first element to be discharged will be the one
closest to the noun, the elements of SPR have to be in the order reverse to word order. In this example,
the possessive would be the first element, and the determiner would be the second. Head-Specifier
constructions simply project the first element of a head’s SPR list feature to the left of that head, and
pass that list’s tail up:

[

SYNSEM
[

LOCAL|CAT|VAL|SPR 〈〉
]

]

�
�

�
�

�
�

�
�

�
�

�
�

�
��

H
H

H
H

H
H

H
H

H
H

H
H

H
HH

[

SYNSEM 1
[

LOCAL|CAT|HEAD determiner
]

]

o

[

SYNSEM

[

LOCAL|CAT|VAL|SPR
〈

1
〉

]

]

�
�

�
�

�
�

�
�

��

H
H

H
H

H
H

H
H

HH

[

SYNSEM 2
[

LOCAL|CAT|HEAD possessive
]

]

meu

[

SYNSEM

[

LOCAL|CAT|VAL|SPR
〈

2 , 1
〉

]

]

pai

The problems start with the fact that possessives do not have to be present in every NP. Either a
unary rule would have to be employed to eliminate the first element of SPR or another Head-Specifier
rule that projects the second element would be necessary. In the first case this rule would have to be
different from the rule that accounts for bare NPs (NPs lacking a determiner), because the latter also
has to add quantifier semantics.

Furthermore, in some contexts the possessive follows the head, as in (18).

(18) um
a

irmão
brother

meu
my

a brother of mine

To account for this case yet another Head-Specifier construction would be needed in a grammar
implemented in the LKB, because the order between head daughter and non-head daughter is dif-
ferent, and the LKB does not support the linear precedence constraints of theoretical HPSG, that are
independent of phrasal types.

The second possibility consists of using a separate feature to encode saturation of possessives. This
would also require two extra syntactic rules to project elements in this feature, one for each relative
word order between possessive and noun.

The multiplication of syntactic rules in the second possibility is aggravated by the existence of
other adnominal elements that cannot be iterated, like cardinals or ordinals. If each of these elements

3.3. GENERAL FEATURE GEOMETRY 47

is encoded in a different valence list, the number of syntactic rules necessary to realize them is in-
evitably large.

The fact that possessives can precede and follow the noun approximates them also to adjuncts.
However, the facts that they cannot iterate, that they may realize noun arguments and that nonethe-
less word order between them and their head is somewhat more constrained than the general behav-
ior of adjuncts in Portuguese makes it problematic to simply group them with adjuncts.

With the general schema assumed for adjuncts, it is not possible to prevent these elements from
iterating, as their combination with heads cannot give rise to nodes with HEAD or VAL features differ-
ent from the head daughter. Another feature under CAT can be used to control iteration, though, and
this is precisely what the functor approach puts in place.

3.3 General Feature Geometry

In Allegranza (1998a,b) and Van Eynde (2003a,b), Head-Functor relations are a cover of Head-Specifier
and Head-Adjunct configurations. Functors, like adjuncts, select their head via a dedicated feature.
All treatments put this feature that encodes selection requirements under the attribute HEAD, but the
name varies (here it is SELECT). As a consequence, this feature SELECT percolates in all headed con-
structions (in all constructions with a head daughter, the feature HEAD of the mother node is token
identical to the same feature in the head daughter). Like Head-Specifier configurations, information
about saturation of the resulting node (i.e. its combinatorial potential) may be different from the com-
binatorial potential of the head daughter. So, for instance, a noun can combine with a determiner on
the left to form a phrase with a determiner and noun, and this phrase cannot combine with another
determiner on the left.

In Head-Specifier configurations, information about this kind of combinatorial potential is deter-
mined by the head noun, not by the specifier. Nouns select their specifier in their SPR attribute, which
is list-valued (and usually either the empty list or a singleton list). Head-Specifier constructions unify
the synsem in that attribute with the synsem of the other daughter, and the SPR of the mother node is
the tail of the SPR list in the head daughter.

In Head-Functor schemata, saturation of the mother node is determined by the functor daughter,
not the head (details are below).

With functors replacing specifiers and adjuncts, the features MOD, SPEC and SPR are no longer
necessary, and neither are Head-Specifier phrases and Head-Adjunct phrases.

LXGram uses the features SELECT, MARKING and MARK to implement Head-Functor schemata.
MARKING is used to describe combinatorial potential other than saturation of a head’s arguments. For
instance, since cardinals cannot iterate, the top node of a phrase like three cars would have a different
value of MARKING from the one of cars.

The features MARK and SELECT are relevant for functors. The value of MARKING of the mother
node in Head-Functor phrases comes from the MARK attribute of the functor daughter. The attribute
SELECT is where functors state the heads they can attach to.

Because the attributes SELECT and MARK are appropriate for functors and functors only, they are
grouped under the MARKER attribute, which is put directly under HEAD. In LXGram there is also an
abstract subtype of head, functor, where this subfeature MARKER is introduced. Figure 3.6 depicts it
with some other subtypes of head.

The feature MARKER is thus present only in the signs that can be the functor daughter of a Head-
Functor phrase, viz. those that have a HEAD type that inherits from functor. According to Figure 3.6,
nouns, which have their HEAD feature of type noun, do not have the MARKER feature, which auto-

48 CHAPTER 3. FUNCTORS

functor

head

adjective preposition adverb

noun

Figure 3.6: Minimal type to introduce the feature MARKER, and some other subtypes of head

matically excludes them from unifying with the functor daughter of Head-Functor phrases, as will be
shown.

3.4 Constraints on Head-Functor Phrases

The main properties of Head-Functor schemata are presented in Figure 3.7.

basic-head-functor-phrase

SYNSEM|LOCAL|CAT

HEAD 1

VAL 2

MARKING 3

HEAD-DTR|SYNSEM 4

LOCAL|CAT

[

HEAD 1

VAL 2

]

NON-HEAD-DTR|SYNSEM|LOCAL|CAT

saturated-cat

HEAD|MARKER

[

MARK 3

SELECT 4

]

Figure 3.7: Outline of Head-Functor schemata

It is a headed construction, so the HEAD of the mother is token-identical to the HEAD of the head
daughter. This constraint — the Head Feature Principle — does not have to be stated explicitly in this
type, since it is inherited from a supertype in the LinGO Grammar Matrix, which implements this
principle. This type is headed-phrase, and a simplified hierarchy of phrasal types is in Figure 3.8. In
that figure, basic-binary-headed-phrase is where the feature NON-HEAD-DTR is introduced, with HEAD-
DTR being appropriate for headed-phrase. The types head-initial and head-final are discussed in the next
section.

basic-binary-headed-phrase

headed-phrase

basic-head-functor-phrase head-initial head-final

Figure 3.8: Type basic-head-functor-phrase in the hierarchy of phrase types

3.4. CONSTRAINTS ON HEAD-FUNCTOR PHRASES 49

Valence is also shared since functors do not discharge the subject or a complement of the head.
Because functors have access to information about valence and marking of the head (the func-

tor daughter’s SELECT feature is unified with the head daughter’s SYNSEM), control on the level of
saturation of the head in these constructions is reduced to lexical specifications in functors.

Functors can cause the saturation described by the feature MARKING on the mother node to be
different from the one on the head daughter — the mother node’s MARKING feature is structure-shared
with the functor’s MARK feature.

The functor daughter is constrained to be saturated: its feature CAT is defined to to be of the type
saturated-cat. The type saturated-cat encapsulates the information of what a saturated phrase is. It is
defined in the following way:

saturated-cat
VAL|COMPS olist
MARKING saturated

The purpose of the constraint on MARKING will be made clear in the next chapter. This means
that the functor daughter of Head-Functor constructions is required to have its complements already
discharged when it feeds this rule (cf. the constraint on COMPS). It is a simplification. For instance,
(19) shows an example where the phrase following the noun (do que as proferidas pelo Comissário) can
arguably be analyzed as the complement of the adjective, but the adjective precedes the noun while
that phrase follows it.

(19) Não
not

encontraria
would find

melhores
better

palavras
words

do que
than

as
the

proferidas
pronounced

pelo
by the

Comissário.
Commissary

I wouldn’t find better words than the ones pronounced by the Commissary.

This example can be analyzed as involving the percolation of the complement of the adjective
(melhores) to the basic-head-functor-phrase node, and projecting it as its sister. In order for this to work,
the COMPS of the functor daughter cannot be empty or a list of unexpressed elements. The account
presented here does not allow for this analysis. However, there are alternative analyses for data like
this one. For instance, Bouma et al. (2001) sketch an analysis for extraposed complements of adjectives
involving a feature EXTRA that is compatible with the constraints presented here.

Section 3.4.1 presents the features involved in constraining word order possibilities between the
functor and the head. Section 3.4.2 presents the constraints on Head-Functor phrases necessary to
compose the semantics. Long distance dependencies are beyond the scope of this dissertation, and
we will not present here the constraints on the NON-LOCAL features of Head-Functor constructions.

3.4.1 Word Order in Head-Functor Phrases

In the LKB, the actual daughters of a rule are configured with the parameter *args-path*. Its value is
usually ARGS, a feature of sign instances.1 It must be list-valued (it is a list of signs), and the position
of an element in that list correlates with linear precedence. In many computational grammars and in
the LinGO Grammar Matrix, features like the attribute HEAD-DTR used in Figure 3.7 can be viewed as
pointers to specific elements of that list.

It is often the case that abstract types for phrases are employed to constrain these pointer features,
and then different subtypes implement different word order possibilities by linking them to different

1The feature ARGS is declared in the LinGO Grammar Matrix as appropriate for signs, but it does not make sense to speak of the ARGS

of lexical items, so in LXGram ARGS is declared in type phrase-or-lexrule instead. This type also comes in the LinGO Grammar Matrix. It
is the supertype of all phrases and lexical rules (which for instance account for morphological inflection), but not of lexical items.

50 CHAPTER 3. FUNCTORS

head-initial

HEAD-DTR 1

NON-HEAD-DTR 2

ARGS
〈

1 , 2
〉

head-final

HEAD-DTR 1

NON-HEAD-DTR 2

ARGS
〈

2 , 1
〉

Figure 3.9: Implementation of word order in binary headed phrases

elements in ARGS. Figure 3.9 shows the constraints for two abstract types that define word order be-
tween the head daughter and the non-head daughter in binary headed phrases: head-initial constrains
the head daughter to precede the non-head daughter, and head-final defines the non-head daughter to
precede the head daughter. These types are in the LinGO Grammar Matrix.

For instance, there is a general type in the LinGO Grammar Matrix where the basic constraints for
Head-Subject constructions are stated. This type is basic-head-subj-phrase. Among the constraints in
basic-head-subj-phrase are the following: 2

basic-head-subj-phrase

SYNSEM|LOCAL|CAT|VAL

SUBJ 〈〉

COMPS 2

HEAD-DTR|SYNSEM|LOCAL|CAT|VAL

SUBJ
〈

1
〉

COMPS 2

NON-HEAD-DTR|SYNSEM 1

In order to parse a sentence like the one in (20a), where the NP subject precedes the head VP,
one needs a syntactic rule that inherits from basic-head-subj-phrase and head-final. In order to parse a
sentence like the one in (20b), where the NP subject follows the VP, one can create a syntax rule that
inherits from basic-head-subj-phrase and head-initial.

(20) a. [NP Este
this

governo
government

] [VP não
not

cairá
will fall down

] porque
because

não
not

é
is

uma
a

casa.
house

This government will not fall because it is not a house.
b. [VP Sairá

will go away
] [NP o

the
mesmo
same

] com
with

benzina,
benzine

porque
because

é
is

uma
a

nódoa.
stain

It will go away with benzine, because it is a stain.

The same is done here. The essential properties of Head-Functor phrases are stated in the abstract
type basic-head-functor-phrase, already presented in Figure 3.7. Two subtypes implement the two word
order possibilities between the daughters, by inheriting from head-initial or head-final. The result is
shown in Figure 3.10. All headed phrases with two daughters inherit from basic-binary-headed-phrase.
The two lowest types are the only ones that are used by the system as syntactic rules.

As stated, all functors can feed both rules. This situation is not desirable, since specific pairings of
head and functor can be restricted to occur in a specific order.

For instance, a preposition comes in the lexicon with the information that it must attach to an NP

2In this rule there is no need to recursively project the first element of SUBJ, as there can be only one subject. Instead of stating that the
SUBJ of the mother is the tail of the SUBJ of the head daughter, the constraints simply state that the SUBJ of the mother is empty and the
SUBJ of the head daughter is singleton.

3.4. CONSTRAINTS ON HEAD-FUNCTOR PHRASES 51

head-functor-phrase

basic-head-functor-phrasehead-initial

basic-binary-headed-phrase

functor-head-phrase

head-final

Figure 3.10: Organization of Head-Functor phrases.

on its right (forming a PP)3and then modify nouns and verbs. PPs can attach to either side of a verb
headed constituent (21a, 21b), but only to the right of nouns (21c, 21d).

(21) a. Isso
that

sai
goes away

[PP com
with

benzina.
benzine

]

That goes away with benzine.
b. Isso

that
[PP com

with
benzina
benzine

] sai.
goes away

That goes away with benzine.
c. Era

was
um
a

chapéu
hat

[PP com
with

uma
an

antena.
antenna

]

It was a hat with an antenna.
d. * Era

was
um
a

[PP com
with

uma
an

antena
antenna

] chapéu.
hat

The way word order is controlled is by using more features to denote word order restrictions.
These restrictions are seen as properties of functors, i.e. it is assumed that word order restrictions are
lexical properties of functors.

The two features that are used are also under MARKER: PREHEAD and POSTHEAD. They contain
constraints that must be satisfied when a functor precedes or follows the head daughter, respectively.
These constraints are put on SELECT and MARK attributes under PREHEAD and POSTHEAD. The basic
organization of features under MARKER is in Figure 3.11. The AVM in this figure does not correspond
to a type definition. It is rather a schematic view of the features we will use. More details on the types
involved are provided in Section 3.5.

MARKER

SELECT synsem
MARK marking

PREHEAD

[

SELECT synsem
MARK marking

]

POSTHEAD

[

SELECT synsem
MARK marking

]

Figure 3.11: Organization of the features under the HEAD of functors.

The head type for prepositions could have the constraints in Figure 3.12, where noun-or-verb is a
supertype of verb and noun.

3This is achieved by constraining the element in the COMPS of prepositions to be of type canonical-synsem, as in Portuguese comple-

52 CHAPTER 3. FUNCTORS

preposition

MARKER

[

SELECT|LOCAL|CAT|HEAD noun-or-verb
PREHEAD|SELECT|LOCAL|CAT|HEAD verb

]

Figure 3.12: Constraints on the HEAD of prepositions. noun-or-verb is a supertype of noun and verb, the head
types of nouns and verbs, respectively.

head-functor-phrase

NON-HEAD-DTR|SYNSEM|LOCAL|CAT|HEAD|MARKER

SELECT 1

MARK 2

POSTHEAD

[

SELECT 1

MARK 2

]

functor-head-phrase

NON-HEAD-DTR|SYNSEM|LOCAL|CAT|HEAD|MARKER

SELECT 1

MARK 2

PREHEAD

[

SELECT 1

MARK 2

]

Figure 3.13: Constraints on head-functor-phrase and functor-head-phrase

In order for these constraints to play the intended role, the two syntactic rules head-functor-phrase
and functor-head-phrase, depicted in Figure 3.10, must be further refined. Their definitions are in Fig-
ure 3.13.

Because the higher SELECT attribute is already unified with the SYNSEM of the head daughter, and
the higher MARK with the MARKING of the mother node, the homonymous features under PREHEAD

and POSTHEAD will also be unified with these, but only when the relevant syntax rule is used.
We show an example involving a PP preceding a verbal projection in Figure 3.14.

3.4.2 Composition of Semantics in Head-Functor Phrases

The composition of semantics comes as expected and is presented in Figure 3.15.4

As all semantic information comes from the daughters, constructional content (C-CONT) is vacuous
— these constructions do not add any semantics to the semantics conveyed by the daughters —, and
the RELS and HCONS of the mother are the union of the homonymous features of the daughters.

We present a simplified scenario regarding the information under the HOOK of the mother node.
As discussed elsewhere (Kasper, 1996; Copestake et al., 2005), there are issues (concerning the fea-
ture LTOP) regarding the interaction between intersective and scopal modifiers. The next paragraphs
describe the problem at hand.

Consider an example like possibly brown cat, where the adjective brown is an intersective modifier
of the noun cat, and the adverb possibly is a scopal modifier of the adjective brown.

Intersective modifiers unify their LTOP feature with the LTOP of the synsem they select via their SE-
LECT attribute in their lexical entries, so that the relations for the modifying element and the modified

ments of prepositions cannot be null (hence they cannot unify with unexpressed-synsem), and they cannot be extracted, either (hence they
must be incompatible with gap).

4Once again, set notation is adopted instead of the implementation-level difference lists. But here the attributes RELS and HCONS are
understood as multi-sets (bags).

3.4. CONSTRAINTS ON HEAD-FUNCTOR PHRASES 53

VP

functor-head-phrase

SYNSEM|LOCAL|CAT

[

HEAD 5 verb
MARKING 2

]

�
�

�
�

�
�

�
�

�
�

�
��

H
H

H
H

H
H

H
H

H
H

H
HH

PP

SYNSEM|LOCAL|CAT

HEAD 3

MARKER

SELECT 1

MARK 2

PREHEAD

[

SELECT 1

MARK 2

]

VAL|COMPS onull

�
�

�
�

�
��

H
H

H
H

H
HH

P

SYNSEM|LOCAL|CAT

HEAD 3

VAL|COMPS
〈

4
〉

com

NP
[

SYNSEM 4
]

benzina

VP
[

SYNSEM 1
[

LOCAL|CAT|HEAD 5
]

]

sai

Figure 3.14: Example parse tree for a VP modified by a preceding PP. The Portuguese phrase is com benzina
sai (goes away with benzine) (see (21b) for a sentence where it can occur).

basic-head-functor-phrase

SYNSEM|LOCAL|CONT

HOOK

[

LTOP 1

INDEX 2

]

RELS A ∪ C ∪ E = A ∪ C

HCONS B ∪ D ∪ F = B ∪ D

HEAD-DTR|SYNSEM|LOCAL|CONT

HOOK|INDEX 2

RELS A

HCONS B

NON-HEAD-DTR|SYNSEM|LOCAL|CONT

HOOK|LTOP 1

RELS C

HCONS D

C-CONT

[

RELS E {}

HCONS F {}

]

Figure 3.15: Semantic constraints on Head-Functor phrases

54 CHAPTER 3. FUNCTORS

one end up with the same LBL in the MRS (as this situation denotes conjunction of the two relations).
Note that in general the LTOP of a lexical entry will be unified with the LBL of a relation in that item’s
RELS, so unifying LTOPs amounts to unifying LBLs in MRSs.

As for scopal modifiers (as well as determiners, which now, as functors, combine via the same
rules), they do not identify these values but rather use the LTOP of the selected constituent as the
value for one of the arguments of the relation they introduce, often mediated by a qeq constraint in
the functor’s HCONS — and all of this is done in the lexical entries for functors.

This yields the wrong semantics for phrases like possibly brown cat. What is produced is equivalent
to λx.possible(brown(x)∧cat(x)), but what is correct is λx.possible(brown(x))∧cat(x) (feature paths are
shortened in the derivation tree):

N

�
�

�
�

�
�

�
�

�
�

�
��

H
H

H
H

H
H

H
H

H
H

H
HH

AP

HEAD 4

[

SELECT 5
[

LTOP 1
]

]

LTOP 1

�
�

�
�

�
�

�
��

H
H

H
H

H
H

H
HH

AdvP

HEAD|SELECT 3
[

LTOP 1
]

LTOP 2

possibly

AP

SYNSEM 3

HEAD 4

[

SELECT 5
[

LTOP 1
]

]

LTOP 1

brown

N

SYNSEM 5

HEAD 6

LTOP 1

cat

As can be seen, because LTOPs are unified in the lexicon, semantic scope and syntactic scope do
not match.

There are two solutions in the literature. One is in Copestake et al. (2005): LTOP features are not
unified in the lexicon, but in the syntax rules. This requires separate rules for intersective modification
(where LTOP attributes are unified) and scopal modification (where these features are not unified). The
other is in (Kasper, 1996): in order to obtain the desired result, the number of features used for the
composition of semantics is enriched.

In order to simplify our exposition, we will not be concerned with this issue in the remainder of
this text, as its solutions are known. These solutions are compatible with the analyses that will be
developed. We will assume that the LTOP of the mother node is the LTOP of the functor daughter, and
that LTOPs are unified in the lexical entries for intersective modifiers.

3.5 Implementation Details

As presented so far, the feature geometry under MARKER allows the attributes SELECT and MARK to
occur at different levels of embedding (cf. Figure 3.11).

3.5. IMPLEMENTATION DETAILS 55

It is worth noting that it does not make sense to have yet another attribute PREHEAD or POSTHEAD

under an attribute PREHEAD or POSTHEAD, because the two syntactic rules for functors only constrain
the paths MARKER|PREHEAD and MARKER|POSTHEAD that are directly under the HEAD feature of the
functor daughter. In fact, if the feature MARKER were declared to be of the type marker and this type
were defined as:

marker
SELECT synsem
MARK marking
PREHEAD marker
POSTHEAD marker

one would get structures of infinite size in order to satisfy total well-typedness (the features PRE-
HEAD and POSTHEAD must be present in every instance of marker, and these features are themselves
of this type — see the paragraph on total well-typedness in Section 2.5).

The problem of structures of infinite size is avoided by resorting to two types, say marker and
marker-full, where marker-full is the only subtype of marker, and these types are defined as:

marker
SELECT synsem
MARK marking

marker-full
PREHEAD marker
POSTHEAD marker

In the head type functor, MARKER is declared to be of type marker. With this design, one gets totally
well-typed feature structures of finite size, but it is still possible to have a constraint on a feature
PREHEAD or POSTHEAD under another feature PREHEAD or POSTHEAD, because the two types, marker
(the type that these features are declared to be) and marker-full, (the most general type for which they
are appropriate) are compatible. That is, the following instance would be valid:

MARKER

marker u marker-full = marker-full
SELECT synsem
MARK marking

PREHEAD

marker
SELECT synsem
MARK marking

POSTHEAD

marker u marker-full = marker-full
SELECT synsem
MARK marking

PREHEAD

marker
SELECT synsem
MARK marking

POSTHEAD

marker
SELECT synsem
MARK marking

In this example, the presence of the most embedded features PREHEAD and POSTHEAD makes the
sort of type inference discussed in Section 2.5 determine that the topmost feature POSTHEAD must be

56 CHAPTER 3. FUNCTORS

of the type marker-full, as marker-full is the most general type for which PREHEAD and POSTHEAD are
appropriate. The type of the topmost POSTHEAD feature is then the unifier of marker-full (the inferred
type) and marker (the type that this feature PREHEAD is declared to be), which is marker-full.

The situation of a PREHEAD or POSTHEAD feature embedded under another PREHEAD or POSTHEAD

attribute would not occur in parsing (as a result of unifying parsed nodes with the daughters of
syntactic rules), but it can occur in the code, in which case it is an error.5

A very simple type hierarchy for the values that the feature MARKER can take, such as the one
presented in Figure 3.16, can be devised to turn such errors into type errors, therefore detectable
statically.

marker-full

marker

marker-simple

Figure 3.16: Type hierarchy for values of MARKER (version 1/3). Final version on p. 61.

The feature MARKER is declared in type functor (see Figure 3.6) to be of type marker, where the
attributes SELECT and MARK are declared:

marker
SELECT synsem
MARK marking

The features PREHEAD and POSTHEAD are defined in marker-full. They are both defined to be of
type marker-simple:

marker-full
PREHEAD marker-simple
POSTHEAD marker-simple

Since marker-full is a subtype of marker, it inherits the features SELECT and MARK, and it can occur
as a value of a feature declared to be of type marker (the feature MARKER in this example). The type
marker-simple has no additional constraints, but it also inherits the features SELECT and MARK from
marker. There is no unifier for marker-simple and marker-full, so the attributes PREHEAD and POSTHEAD

cannot be embedded under other features PREHEAD or POSTHEAD.
If POSTHEAD and PREHEAD are not constrained in a feature structure under the respective MARKER

feature (e.g. it shows constraints on SELECT and MARK only), PREHEAD and POSTHEAD will not appear
in that definition, since MARKER is of type marker, which does not include these features. If PREHEAD

or POSTHEAD are constrained, type inference determines that MARKER must be of type marker-full,
since that is the most general type for which these features are appropriate.

3.5.1 Addition of Minimal Types

Problem

Consider once again the constraints on the HEAD of prepositions presented above in Figure 3.12. With
the type hierarchy and the type declarations for the features MARKER (marker) and PREHEAD (marker-

5For instance, it can occur as a consequence of a constraint of the form ...|POSTHEAD|POSTHEAD|..., instead of the intended form ...|
POSTHEAD|...

3.5. IMPLEMENTATION DETAILS 57

simple) that have just been presented, type inference determines the following types in the structure
(where marker is the type that the attribute MARKER is declared to be and marker-full is the most general
type for which the attribute PREHEAD is appropriate):6

preposition

MARKER

marker u marker-full = marker-full
SELECT|LOCAL|CAT|HEAD noun-or-verb
MARK marking

PREHEAD

marker-simple
SELECT|LOCAL|CAT|HEAD verb
MARK marking

POSTHEAD

marker-simple
SELECT synsem
MARK marking

Because of type expansion, the feature POSTHEAD is also present under MARKER: the presence of
the feature PREHEAD makes the type of MARKER be marker-full. Since marker-full is declared to have a
feature POSTHEAD, this feature has to be added for the structure to be totally well-typed. Additionally,
a feature MARK is added by type expansion under MARKER (it is a feature of marker and marker-full)
and under PREHEAD (inherited by marker-simple from marker).

The features POSTHEAD and MARK in such a structure are completely uninformative, since they
take as values the most general types that are valid for them. The problem is that, because PREHEAD

and POSTHEAD are declared in the same type, when one of them is present in a feature structure,
the other one has to be present as well in order to satisfy total well-typedness. This is a result of
the interaction between type inference and type expansion. A similar situation holds for the features
SELECT and MARK.

This consequence does not affect correction, but it has a potential negative impact on efficiency,
as unification of larger feature structures is more expensive than unification of smaller ones (because
every feature and subfeature must be unified). It also obscures feature structures, by making them
contain information that is irrelevant.

Approach

The type hierarchy just presented for the feature MARKER can be extended with so-called minimal
types, in order to reduce the size of feature structures in the lexicon and the feature structures manip-
ulated by the grammar at run time. Minimal types are used in several LKB grammars, like the LinGO
English Resource Grammar, and in the LinGO Grammar Matrix.

The idea behind the use of minimal types is to enrich the type hierarchy so that features are present
in a feature structure only if they are constrained. Flickinger (2000) proposes this kind of strategy.

Consider a revised hierarchy for MARKER objects in Figure 3.17.

6In this AVM and in the following ones we do not expand the feature structures under the SELECT attributes, which will be much larger
than shown after type expansion.

58 CHAPTER 3. FUNCTORS

marker

marker-min

pre-marker post-marker

pre-or-post-marker

marker-simple-min

marker-simple

Figure 3.17: Type hierarchy for values of MARKER (version 2/3). Previous version on p. 56. Final version on
p. 61.

With this hierarchy, SELECT and MARKER are still declared in marker, as before:

marker
SELECT synsem
MARK marking

In functor, the feature MARKER is defined to be marker-min, instead of being of type marker:

functor
MARKER marker-min

The type marker-min is declared with no features.
The attributes PREHEAD and POSTHEAD are declared in different types: PREHEAD in pre-marker and

POSTHEAD in post-marker. They are now both of the type marker-simple-min:

pre-marker
PREHEAD marker-simple-min

post-marker
POSTHEAD marker-simple-min

The type marker-simple-min has no features. The features SELECT and MARK can however be used
under PREHEAD or POSTHEAD: e.g. if a constraint mentions the feature SELECT under PREHEAD the
type of that PREHEAD instance is inferred to be marker-simple, the unifier of marker, where SELECT is
declared, and marker-simple-min, the type that the feature PREHEAD is declared to be.

The revised hierarchy and type definitions produce the feature structure in Figure 3.18 for the
HEAD of prepositions once type inference and type expansion are performed (from the definition
presented above in Figure 3.12).

In this structure, the type of the feature MARKER is the unifier of the types marker-min, marker and
pre-marker, which is pre-marker. The type marker-min is the type that this feature is declared to be,
marker is the type the feature structure under MARKER is inferred to be because of the presence of
SELECT, and pre-marker is the type the same structure is inferred to be because of the presence of the
feature PREHEAD.

The type of the feature structure under PREHEAD is the unifier of the types marker-simple-min and
marker, which is marker-simple. The type marker-simple-min is the type this feature is declared to be, and
marker is the type it is inferred to be because of the constrained SELECT feature under it. The attributes

3.5. IMPLEMENTATION DETAILS 59

preposition

MARKER

marker-min u marker u pre-marker = pre-marker
SELECT|LOCAL|CAT|HEAD noun-or-verb
MARK marking

PREHEAD

marker-simple-min u marker = marker-simple
SELECT|LOCAL|CAT|HEAD verb
MARK marking

Figure 3.18: Feature structure for the type preposition after type expansion

MARK under MARKER and PREHEAD are still added by type expansion, because of the presence of the
feature SELECT, as SELECT and MARK are still declared in the same type, marker.

We see a reduction in the size of the feature structure, as the attribute POSTHEAD is no longer added
by type expansion.7

Sometimes the reduction in the size of the feature structures only occurs in the feature structures
of lexical items. However, sometimes the feature structures manipulated at run time are reduced in
size, too. The constraints on prepositions just presented illustrate this point. Because a constraint
is put inside the PREHEAD attribute in the definition of the type preposition, the type for MARKER of
prepositions is inferred to be pre-marker, and the feature PREHEAD will always be present. In the cases
where a preposition follows the head, unification with the functor daughter in head-functor-phrase will
cause the type of MARKER to be pre-or-post-marker, in which case both PREHEAD and POSTHEAD will be
present. In this case no reduction in the size of feature structures is obtained at run time.8 However,
in the cases where the preposition precedes the head, it remains of this type (and the corresponding
feature structure is still like that in Figure 3.18), and the feature POSTHEAD is not present.

On the other hand, when the definition of a functor does not constrain PREHEAD or POSTHEAD, a
reduction in the size of the feature structures is always obtained: PREHEAD will only be present in the
feature structures when that functor feeds the functor-head-phrase, and POSTHEAD will only be present
when that functor feeds the head-functor-phrase.

Discussion

The advantage of using minimal types is that feature structures are smaller. Because unification of
feature structures is recursive, smaller structures make unification operations more efficient. It also
has the nice side effect that the features that are left completely unconstrained are not present in the
final feature structures, which makes them more succinct.

The disadvantage is that more type unifications must be performed at run time. Consider the
example of prepositions.

With the first version of the hierarchy of values for the feature MARKER, presented in Figure 3.16,
both the MARKER of prepositions and the MARKER of the non-head daughter of head-functor-phrase and
functor-head-phrase are of the type marker-full after type inference. For the two structures to unify (the
structure under the MARKER of the preposition and the structure under the MARKER feature of the

7We also see a reduction in the feature structures of the two syntactic rules for functors presented above in Chapter 3.4.1. With the
previous hierarchy for MARKER values, the features PREHEAD and POSTHEAD would be present in both rules, as the presence of one of
them would cause the addition of the other after type inference and type expansion. With the new hierarchy, they are as shown in Figure 3.13,
as far as the feature structure under MARKER is concerned, and once again ignoring type expansion of the synsem objects under the SELECT

features.
8In any case, a preposition must combine with an NP to its right before the resulting node attaches to the element it modifies, via the

Head-Functor rules. Before the Head-Functor rules are used, the feature structures that are manipulated by the parser are also smaller.

60 CHAPTER 3. FUNCTORS

non-head daughter of one of these rules), their type must be unifiable and the features they contain
must be unifiable. The first part — type unification (i.e. comparison of two types to determine their
most general unifier, or greatest lower bounds) — is trivial to compute in this example (marker-full u
marker-full), as unification is idempotent.

With the revised hierarchy, the MARKER attribute of prepositions is of type pre-marker, as described
above. The type of the MARKER feature under the non-head daughter of functor-head-phrase is also
pre-marker (because PREHEAD is constrained there), and in this case type unification is also trivial. But
in head-functor-phrase the same feature is of type post-marker. In order to unify the two structures (the
structure under the MARKER feature of the preposition’s HEAD and the structure under the MARKER

attribute of the non-head daughter of head-functor-phrase) it is thus necessary to find a subtype com-
mon to pre-marker and post-marker (which is pre-or-post-maker). In this case, it is necessary to travel
along the type hierarchy, and type unification will be more costly.

However, the LKB algorithm that computes type unification has approximately constant complex-
ity at run time (Malouf et al., 2000).

It would be truly constant at run time if the LKB and PET precomputed the unification of all pairs
of types in the type hierarchy at grammar compile/load time and stored them in a data structure
with constant time random access, like a hash table. In the LKB this is not done, because unification
of most pairs of types in the type hierarchy would fail and is never going to be tried, as they appear
in completely different contexts. For instance, consider that no bug-free grammar is going to try to
unify a feature HEAD with a feature VAL, as they take completely different values (the most general
types appropriate for these features are incompatible, therefore unification is deemed to fail).

Instead, the LKB stores the results of previous unifications in a hash table. Malouf et al. (2000)
mention that there is “no appreciable runtime performance cost compared with full table lookup”
and that in fact around 99% of the types compared are found in this cache when the grammar used is
the LinGO English Resource Grammar. Therefore, the overhead of more type unifications should not
be detrimental in practice. Flickinger (2000) reports improvements in performance associated with
the use of minimal types, which means that more efficient unification of feature structures (they are
smaller) compensates for more type unifications.

Of course, the price to pay for using this technique is having more complicated hierarchies (there
must be unifiers for all types introducing the features that can co-occur), besides more unification
operations at run time.

The type hierarchy under marker-min could be further elaborated, with the purpose of reducing
feature structures. For instance, if the feature SELECT is constrained, the attribute MARK will also be
added to the relevant feature structure, and vice-versa, as a consequence of type inference and total
well-typedness, because both features are introduced in the same type. This situation would not arise
if different types were used to introduce them. As we will see in the following chapters, SELECT and
MARK are usually constrained together, so such an optimization would possibly have little effect.

In several type hierarchies of the grammar, we use this technique in order to reduce the size of
feature structures. In the following chapters, we will sometimes present hierarchies that are simplified
in that minimal types are not shown. The hierarchies presented are equivalent to the ones used in the
grammar, but we omit minimal types whenever possible, as they obscure type hierarchies and we
have already presented their purpose here.

3.6. LEXICAL CONSTRAINTS ON RULE APPLICATION 61

3.6 Lexical Constraints on Rule Application

A final extension to the type hierarchy of MARKER values produces the hierarchy in Figure 3.19, which
is the one that will be used.

marker

marker-min

pre-marker post-markerpre-only-marker-min

pre-only-marker

post-only-marker-min

post-only-markerpre-or-post-marker

marker-simple-min

marker-simple

Figure 3.19: Type hierarchy for values of MARKER (final version — 3/3). Previous version on p. 58.

The types pre-only-marker and post-only-marker in the hierarchy in Figure 3.19 serve a purpose dif-
ferent from the one of the minimal types. They are there to block rule application of functor-head-phrase
or head-functor-phrase, making it possible to prevent specific functors from appearing in one of the two
syntactic rules for functors.

The types pre-only-marker-min and post-only-marker-min are the corresponding minimal types (they
do not inherit from pre-marker or post-marker, so they lack the features PREHEAD and POSTHEAD). These
new types have no associated constraints, besides the constraints they inherit from their supertypes.

The new types are useful in cases where a functor cannot precede or follow its head. For instance,
cardinals never follow the noun they modify in Portuguese:

(22) a. as
the

duas
two

lentes
lenses

the two lenses
b. * as

the
lentes
lenses

duas
two

Accordingly, their MARKER feature can be constrained to be of type pre-only-marker-min (among
other constraints — more details in Chapter 4):

MARKER

pre-only-marker-min
SELECT|LOCAL|CAT|HEAD noun

The type pre-only-marker-min does not have a feature POSTHEAD. The feature POSTHEAD is declared
in type post-marker. According to the hierarchy in Figure 3.19, there is no unifier for pre-only-marker-
min and post-marker. Therefore, POSTHEAD cannot be under the MARKER attribute of a cardinal. This
makes it impossible for a cardinal to be in the functor daughter (the non-head daughter) of a head-
functor-phrase, where this feature is constrained. Type inference determines that the MARKER feature
of the functor daughter of head-functor-phrase must be of type post-marker, which is not unifiable with
pre-only-marker-min.

62 CHAPTER 3. FUNCTORS

Similarly, post-only-marker-min does not have a feature PREHEAD: PREHEAD is declared in the type
pre-marker, and according to the same hierarchy there is no unifier for post-only-marker-min and pre-
marker either. Elements with a MARKER feature constrained to be post-only-marker-min are thus not
eligible to be the non-head daughter of functor-head-phrase.

After type expansion, the attribute PREHEAD will not be present under the MARKER feature of
cardinals, given the above definition: it is not constrained in that definition, and the feature PREHEAD

is appropriate for type pre-marker, which is not a supertype of pre-only-marker-min. Type expansion
will add the feature MARK, as it is also appropriate for type pre-only-marker-min (it inherits this feature
from marker):

MARKER

pre-only-marker-min
SELECT|LOCAL|CAT|HEAD noun
MARK marking

Although PREHEAD is not present, a functor with such a head is nonetheless eligible to feed the
functor-head-phrase rule, as pre-only-marker-min (the type of MARKER in the lexical item) and pre-marker
(the type of MARKER in the functor daughter of functor-head-phrase) are unifiable (they unify to pre-
only-marker according to the hierarchy in Figure 3.19).

In the lexicon, the feature structures for cardinals are thus reduced in size, as the feature PREHEAD

is not present in these structures (using the constraints just presented). At run time, when a cardinal
is matched with the non-head daughter of functor-head-phrase, the feature PREHEAD is added to the
structure corresponding to the cardinal. The feature POSTHEAD is never present.

3.7 Example

As a way of illustration of the technical details discussed so far, we present the analysis with functors
for the NP in (23). Full details are to be discussed in Chapter 4, where the machinery described in the
present chapter is employed to model NP structure.

(23) os
the

quatro
four

naipes
suits

the four suits

Figure 3.20 includes a type hierarchy under head with all the head types mentioned so far.

functor

head

preposition prenominal-functor

noun-or-verb

noun verb

Figure 3.20: Type hierarchy under head

The type for the HEAD of determiners and cardinals can be defined as:

3.7. EXAMPLE 63

prenominal-functor

MARKER

pre-only-marker-min
SELECT|LOCAL|CAT|HEAD noun

The parse for the NP in (23) produced by this analysis is in Figure 3.21.

NP
�

��

H
HH

D

os

N
�

�
H

H

CARD

quatro

N

naipes

functor-head-phrase
SYNSEM|LOCAL|CAT|HEAD 1 noun

NON-HEAD-DTR|SYNSEM|LOCAL|CAT|HEAD

[

prenominal-functor
MARKER|SELECT 2

]

HEAD-DTR

functor-head-phrase

SYNSEM 2
[

LOCAL|CAT| HEAD 1
]

NON-HEAD-DTR|SYNSEM|LOCAL|CAT|HEAD

[

prenominal-functor
MARKER|SELECT 3

]

HEAD-DTR|SYNSEM 3
[

LOCAL|CAT| HEAD 1
]

Figure 3.21: AVM and corresponding tree for the NP os quatro naipes (the four suites).

PPs can already be blocked from occurring on the left of nouns. The result of a PP attaching to the
left of noun-headed constituents is displayed in Figure 3.22. The two daughters of functor-head-phrase
have incompatible constraints. The head daughter is constrained to have a HEAD attribute with the
value noun, but the constraint under the PREHEAD attribute of the preposition requires an element
with the value verb for this feature.

functor-head-phrase

HEAD-DTR|SYNSEM 1
[

LOCAL|CAT|HEAD noun u noun-or-verb u verb =⊥
]

NON-HEAD-DTR|SYNSEM|LOCAL|CAT|HEAD|MARKER

SELECT 1
[

LOCAL|CAT|HEAD noun-or-verb
]

PREHEAD|SELECT 1
[

LOCAL|CAT|HEAD verb
]

Figure 3.22: Unification failure when trying to parse a PP and noun sequence via functor-head-phrase.

So far, nothing prevents parsing or generating the impossible NP in (24), and nothing so far allows
a distinction between NPs and N s. This situation will be corrected in Chapter 4.

(24) * quatro
four

os
the

naipes
suits

The features MARKING and MARK are not list-valued, their type is marking. A hierarchy under
this type is crucial to define phrase-structure. Chapter 4 develops a full analysis of NP structure for

64 CHAPTER 3. FUNCTORS

Portuguese defined in terms of a type hierarchy of marking and constraints on the features MARKING

and MARK using the values in that hierarchy.

3.8 Comments on the Functor Architecture

With the setup just presented, functors have visibility over the constituents they attach to through
the SELECT features, but these constituents do not have any visibility over functors. This presents no
problem.

For the purpose of the composition of semantics, it is necessary that determiners have access to
their sister node, which is what happens with this functor approach. It is not necessary that nouns
have visibility over determiners.

Consider the example in Figure 3.23, for the Portuguese NP um falso carro (a false car).
In this example, the RSTR of the quantifier relation introduced by the determiner is equated via a

qeq constraint in the determiner’s lexical entry with the LTOP of the phrase falso carro (false car), which
in that figure is tagged with h3 . This is also the LTOP of the adjective, not of the noun (the noun’s
LTOP is tagged with h5 in that figure), and the noun does not have access to the adjective’s LTOP. The
semantics for the NP is equivalent to λP._um_q(x,_ f also_a(e,_carro_n(x)),P(x)), which translates to
first-order logic as λP.∃x[¬_carro_n(x)∧P(x)].

If determiners happened to not have access to their sister node, the only way to get the semantics
right would be to create a special syntactic rule for determiner attachment, that fills the LARG of the
qeq introduced by the determiner with the appropriate value. This value cannot be filled in the lexical
entries of nouns. In this example, the LTOP tagged with h3 is not visible in the noun’s lexical entry.
The only LTOP visible there is the noun’s LTOP, with the tag h5 . One could think of filling the LARG of
the determiner’s qeq constraint with this value (the noun’s LTOP) in the feature structure for nouns, as
in the following constraints (assuming the SPR feature and Specifier-Head constructions):

SYNSEM|LOCAL

CAT|VAL|SPR

〈[

LOCAL|CONT|HCONS

{

[

LARG 1
]

}

]〉

CONT|HOOK|LTOP 1

This would produce an MRS where it is stated that both the determiner and the adjective relations
must scope over the noun relation with the possibility of quantifier relations in between. Since the
relation contributed by the adjective is not a quantifier relation, one would not get the desired formula.
Instead one would get the equivalent of λP._ f also_a(_um_q(x,_carro_n(x),P(x))), which is not what is
intended (e.g. A false car was sold does not mean It is false that a car was sold).

This problem exists in every NP where the LTOP of the noun and the LTOP of the determiner’s sister
node are different.

This is what motivated the SPEC feature in specifier approaches (Pollard and Sag, 1994, p.50,
adapted here to the MRS universe). In the specifiers approach, nouns have visibility over determiners
(via the SPR feature) and determiners also have visibility over their sister node (via the SPEC feature).
Nouns select the syntactic properties of the determiners they can co-occur with, and determiners look
at semantic properties of their sister node.

3.8.
CO

M
M

EN
TS

O
N

TH
E

FU
N

CTO
R

A
RCH

ITECTU
RE

65

NP

functor-head-phrase

SS|LOC|CNT

HOOK|LTOP h1

RELS A

LBL h1 h
PRD ”_um_q_rel”
RSTR h2 h
BODY h

∪ B

LBL h3 h
PRD ”_falso_a_rel”
ARG0 e
ARG1 h4 h

∪ C

LBL h5 h
PRD ”_carro_n_rel”
ARG0 x

HCONS D

qeq
HARG h2

LARG h3

∪ E

qeq
HARG h4

LARG h5

∪ F {}

�
�

�
�

�
�

�
�

�
�

�
�

�

H
H

H
H

H
H

H
H

H
H

H
H

H

D

SS|LOC

CAT|HEAD|MKR|SEL 6

CNT

HOOK|LTOP h1

RELS A

HCONS D

um
a

N

functor-head-phrase

SS 6

LOC|CNT

HOOK|LTOP h3

RELS B ∪ C

HCONS E ∪ F

�
�

�
�

�
�

�
�
�

H
H

H
H

H
H

H
H

H

A

SS|LOC

CAT|HEAD|MKR|SEL 7

CNT

HOOK|LTOP h3

RELS B

HCONS E

falso
false

N

SS 7

LOC|CNT

HOOK|LTOP h5

RELS C

HCONS F

carro
car

Figure 3.23: Visibility of determiners over nouns. SS abbreviates SYNSEM, LOC abbreviates LOCAL, MKR abbreviates MARKER, SEL abbreviates SELECT, CNT
abbreviates CONT, PRD abbreviates PRED.

66 CHAPTER 3. FUNCTORS

With the functors approach, in turn, syntactic selection is enforced from determiners by way of
their feature structures. This is possible as long as the relevant information to be selected is encoded
in the feature structures of nouns and percolated up to the determiner’s sister phrase.

The functors approach is therefore more parsimonious than the specifiers approach with respect
to the number of selection features: we only use one feature, SELECT, through which determiners
(as well as all other functors) select the head. This feature is required, since determiners must have
access to their sister node, for the reasons related to the composition of semantics that have just been
described. A feature similar to the SPR feature is not necessary in the functors approach, because the
saturation of the head is encoded in a different feature, MARKING.

The functors design does have one consequence — agreement must be enforced in the functors.
Assuming agreement is encoded in the feature AGR, as in the LinGO Grammar Matrix, if a functor
exhibits agreement with the head noun (e.g. most Portuguese determiners, adjectives, etc.) the uni-
fication of the AGR feature of the noun with that of the functor must be stated in the lexical entry for
the functor.

For instance, with the LinGO Grammar Matrix setup, AGR is a feature under LOCAL, and has sub-
features that encode information about person, number and gender. In LXGram, the gender of nouns
is specified in lexical entries for nouns, and the value of the feature where number information is
present is instantiated by inflectional rules. For the other morpho-syntactic classes that show varia-
tion in number and gender (adjectives, determiners, etc.), this information is also filled in by inflection
rules. The feature AGR is percolated (passed up to the mother node from one of the daughters via uni-
fication, in this case from the head daughter) in all headed constructions.9 In our approach, a functor
that exhibits agreement with its head noun must unify its AGR with that of the noun it selects. This is
achieved by constraints like:

SYNSEM|LOCAL

CAT|HEAD|MARKER|SELECT|LOCAL|AGR 1

AGR 1

In the exposition in the following chapters, agreement constraints are not shown, since they are
simply implemented via unification of the AGR features, when appropriate.

3.9 Summary

We considered the various syntactic relations that are used to model dependencies between syntactic
constituents. In HPSG an attribute SUBJ encodes information of what constitutes a possible subject of
a word. An attribute COMPS points to information about its complements. Some other attributes are
used in the literature.

We resorted to a feature SELECT, based on the work of Allegranza (1998a,b) and Van Eynde
(2003a,b). This attribute is appropriate for elements that can serve the syntactic function of functor,
which is an abstraction over the more usual linguistic concepts of adjunct and specifier. The feature
SELECT of a functor item is where it is stated what that item’s syntactic sister node in a derivation tree
must be like. Examples include adjectives, prepositional phrases, cardinals, ordinals, determiners,
etc.

9For this reason, and because AGR is meaningless to some items (e.g. Portuguese prepositions do not show any inflection, so their AGR

would always be completely underspecified), we chose to change the matrix.tdl (the file that contains the Matrix definitions) we are using
and make AGR a feature under HEAD. AGR is percolated in headed constructions, because HEAD is percolated in these constructions. The
constraints we are using are somewhat different from the ones presented below, because AGR is in a different place, but the differences are
immaterial.

3.9. SUMMARY 67

We also defined the rules that pick this information and combine these elements with other con-
stituents. The architecture accounts for word order possibilities between the different elements in-
volved. The features PREHEAD and POSTHEAD are used to this end. In PREHEAD additional require-
ments are implemented that describe the constraints that must be satisfied when one of these elements
precedes the element it selects for via the SELECT feature. Similarly, POSTHEAD contains the constraints
that must be satisfied when the functor follows its head.

The way the semantic representations are built was also discussed. With the MRS mode of com-
posing semantics, the semantics of Head-Functor constructions is simply the combination of the rela-
tions and the handle constraints of the two daughters of this construction, the head and the functor.
No extra information is needed.

The constraints on the syntax rules that are employed to combine functor and head were pre-
sented. In HPSG, syntax rules are also types, and can be organized in a type hierarchy just like any
other types. We organized the Head-Functor constructions in a type hierarchy, taking advantage of in-
heritance in order to factor out the constraints that are common to several constructions. Very general
types that are responsible for word order constraints and are already defined in the LinGO Grammar
Matrix are used as supertypes of specific constructions that differ only with respect to word order.

It is also possible to state the specific constraints of Head-Functor constructions in a single type,
that abstracts from word order. Using all these types, specific Head-Functor constructions with con-
strained word order are implemented via multiple inheritance.

Additionally, we provided implementation details that are justified by efficiency reasons. The
specific logic of typed feature structures accepted by the systems where LXGram is run (the LKB
and PET) can be exploited for efficiency reasons. Certain properties of the type system, like type
inference, can be taken into consideration when the shape of a type hierarchy is defined, so that the
data structures defined by the grammar and manipulated by the parsing and generation algorithms
can have a reduced size, with a positive impact on performance (Flickinger, 2000). We illustrated this
implementation strategy with the types and the attributes that are used in the functor architecture.

68 CHAPTER 3. FUNCTORS

4
NP Syntax and Semantics

4.1 Overview

In this chapter we present a system of constraints that captures Portuguese NP structure and meaning,
based on the functor architecture presented in Chapter 3. We will present a functor-based treatment
of the syntax of several NP constituents, and we will also describe their semantics when appropriate.
This analysis was adopted in the implementation of LXGram and as such has been thoroughly tested.

In the next section, an overview of the data under consideration is presented, and each of the
remaining sections will cover a position inside the NP.

4.2 Data

The table in Appendix A presents a summary of the NP structure to be modeled, with examples of
the relevant data. It is broken down into nine positions, that reflect word order.

Many of the elements in this table do not need to be atomic. For instance, adjectives can be modi-
fied or have complements of their own.

The category Predeterminers (Position I) in this table contains elements like todo (all).
The category Determiners (Position II) includes the definite and indefinite articles, the demonstra-

tives and other items, like bastante(s) (much, several).
The category Possessives (Position III) contains prenominal possessives, which in European Por-

tuguese are preceded by determiners.
The category Cardinals (in Position IV) includes the cardinal numerals, either atomic (dois, two) or

complex (vinte e dois, twenty two).
The category Ordinals (in Position IV) includes the ordinal numerals, atomic (primeiro, first) and

complex ones (vigésimo primeiro, twenty-first).
The category Vague Quantifiers (in Position IV) contains elements like muitos (many), poucos (few).

The distinction between determiners like bastantes and vague quantifiers is not semantic but syntac-
tic. Consider their different behavior with respect to a preceding definite article, exemplified in the
following sentences:

(25) a. [NP Muitas
many

espécies
species

de
of

sapos
frogs

da
of the

Amazónia
Amazon Rainforest

] já
already

estão
are

extintas.
extinct

Many species of frogs of the Amazon Rainforest are already extinct.
b. [NP Bastantes

several
espécies
species

de
of

sapos
frogs

da
of the

Amazónia
Amazon Rainforest

] já
already

estão
are

extintas.
extinct

Several species of frogs of the Amazon Rainforest are already extinct.
c. [NP As

the
muitas
many

espécies
species

de
of

sapos
frogs

da
of the

Amazónia
Amazon Rainforest

] já
already

estão
are

extintas.
extinct

The many species of frogs of the Amazon Rainforest are already extinct.

69

70 CHAPTER 4. NP SYNTAX AND SEMANTICS

d. * [NP As
the

bastantes
several

espécies
species

de
of

sapos
frogs

da
of the

Amazónia
Amazon Rainforest

] já
already

estão
are

extintas.
extinct

The category Indefinite Specifics (in Position IV) contains elements like certo and determinado (cer-

tain), that mark NPs with exclusively indefinite specific readings, as in the first example below (26a):

(26) a. Todas
all

as
the

pessoas
people

leram
have read

um
a

certo
certain

livro.
book

All people have read a certain book.
∃y[book(y)∧∀x[person(x)→ read(x,y)]]

b. Todas
all

as
the

pessoas
people

leram
have read

um
a

livro.
book

All people have read a book.
∀x[person(x) →∃y[book(y)∧ read(x,y)]]

∃y[book(y)∧∀x[person(x)→ read(x,y)]]

The most interesting property of these elements is that their contribution to the meaning of the
sentences where they occur consists in merely restricting the relative scope possibilities between the
quantifiers in these sentences. The example Portuguese sentence in (26b) is ambiguous between the
two readings shown below it. In contrast, the example sentence in (26a) is not ambiguous and only
has the reading where the existential quantifier has wide scope — its specific reading. This issue is
explored in Section 4.10.1.

The category Prenominal Adjective Phrases (Position V) includes adjective phrases (APs) that pre-
cede the noun, and the slot named Head Noun (Position VI) represents the position where the noun
surfaces.

The slot for Adjectival Arguments (Position VII) represents the position where adjectives that re-
alize arguments of nouns surface. In the example in the table repeated below, the adjective form
americana (American) realizes one of the arguments of the noun invasão (invasion). The semantics of
this NP is quite similar to the semantics of a sentence like The U.S. invaded Iraq. More specifically, the
arguments of the semantic relations for the noun invasão/invasion and the verb invade are the same in
these examples.

(27) a
the

invasão
invasion

americana
American

do
of the

Iraque
Iraq

the American invasion of Iraq

In Position VIII one finds APs that do not saturate noun arguments, prepositional phrase (PP) ad-
juncts (not realizing noun arguments) and complements (realizing noun arguments), adverbial phrase
(AdvP) adjuncts of nouns, postnominal demonstratives and postnominal possessives (adjuncts or
complements). Not all adverbs can occur in this context (as noun modifiers). Among the adverbial
phrases that can modify nouns one finds aqui, aí, ali, dentro (de NP), fora (de NP), junto (a/de NP) respec-
tively here, there, there, inside (NP), outside/out of NP, nearby/near NP.

The last slot is for relative clauses (Position IX).
Elements occupying the same position in the table in Appendix A generally show free word order

among themselves (but, depending on the category of these elements, there are some restrictions that
will be presented in the following Sections). For instance the relative word order between cardinals
and ordinals (both in Position IV) is unconstrained:

(28) a. Os
the

primeiros
first

dois
two

filmes
films

foram
were

cancelados.
canceled

The first two films were canceled.

4.3. GENERAL CONSTRAINTS 71

b. Os
the

dois
two

primeiros
first

filmes
films

foram
were

cancelados.
canceled

The two first films were canceled.

The numbering of these positions reflects precedence constraints among these elements: to give
an example, prenominal adjectives (Position V) cannot precede cardinals (Position IV):

(29) a. Os
the

adeptos
fans

entusiasmaram-se
got excited

depois de
after

[NP duas
two

grandes
great

vitórias
victories

do
of

clube.
the

]
club

The fans got excited after two great victories of their club.
b. * Os

the
adeptos
fans

entusiasmaram-se
got excited

depois de
after

[NP grandes
great

duas
two

vitórias
victories

do
of the

clube.
club

]

The elements in some slots can iterate; the elements in others cannot. This sort of information
is given in the following sections. This table is an approximation of the NP structure that is cov-
ered in this chapter. More detailed descriptions of linear precedence constraints and co-occurrence
restrictions among the several NP constituents are provided in the following sections.

The presentation in the following sections does not respect the order of the elements in the table in
Appendix A. The simple cases are presented first. For instance, the discussion on the implementation
of determiners (Position II) is presented before the one on predeterminers (Position I), because the
discussion about determiners is important for the discussion about predeterminers.

4.3 General Constraints

For ease of exposition, we will use a very flat hierarchy under head (for values of the feature SYNSEM

|LOCAL|CAT|HEAD), that does not exploit inheritance in order to factor out the constraints common to
multiple types. A simplified version of the type hierarchy under head that will be used is in Figure 4.1.
All head subtypes that will be presented containing the attribute MARKER inherit from the type functor,
where this feature is declared. We assume all of these types are a direct descendant of functor.

functor

head

noun-or-verb

noun verb

Figure 4.1: Simplified type hierarchy under head

Figure 4.2 shows a first version for a type hierarchy for marking and the following paragraphs
describe the necessary constraints that are employed to model the NP structure assumed. In this
hierarchy, the types saturated and non-saturated provide a way to abstract from the implementation of
NP structure: parts of the grammar that are not directly relevant to the noun phrase use these types
to refer to information about NPs. Their subtypes are employed in the definitions of NP constituents.

With this setup, items that select for NPs constrain them to have a MARKING with value saturated
(instead of requiring their SPR feature to be empty). For instance, an item subcategorizing for exactly

72 CHAPTER 4. NP SYNTAX AND SEMANTICS

saturated

marking

non-saturated

no-det-marking

basic-marking

Figure 4.2: Type hierarchy under marking — (version 1/6). Final version on p. 118.

one NP complement will be constrained as follows:

SYNSEM|LOCAL|CAT|VAL|COMPS

〈

LOCAL|CAT

HEAD noun
VAL|COMPS olist
MARKING saturated

〉

In LXGram we encapsulate the information of what exactly constitutes a saturated constituent (in
this case the constraints on COMPS and MARKING). To that end we create a subtype of cat (the type of
the feature CAT) called saturated-cat, with the constraints:

saturated-cat
VAL|COMPS olist
MARKING saturated

With this type, items that select exactly one NP complement are constrained in the following man-
ner instead:

SYNSEM|LOCAL|CAT|VAL|COMPS

〈

LOCAL|CAT

saturated-cat
HEAD noun

〉

For instance, intransitive verbs, selecting an NP subject and no complements, have lexical entries
with the following constraints, among others:

SYNSEM|LOCAL|CAT

HEAD verb

VAL

SUBJ

〈

LOCAL|CAT

saturated-cat
HEAD noun

〉

COMPS 〈〉

Nouns come in the lexicon with [MARKING basic-marking]. This type is incompatible with saturated.
Therefore, nouns need to combine with a functor with a MARK value unifiable with saturated in order
for the resulting constituent to be able to occur in NP contexts.

4.4. DETERMINERS 73

We will simplify our presentation as far as the status of the feature SUBJ for noun-headed con-
stituents is concerned. We assume that it is always empty for nouns, which can be stated in a general
type for nominal lexical entries, from which all lexical types for nouns inherit. If this is the case, it
does not need to be constrained in any way elsewhere, but it will be percolated in the relevant phrases.
This is accounted for in our treatment of Head-Functor constructions, where the entire VAL feature of
the head daughter is passed up. But also note that SUBJ can be used to account for co-occurrence re-
strictions between nouns in a predicative context and their subject. The following examples illustrate
that a noun like facto (fact) can take a sentential subject (more specifically, a complementizer phrase
introduced by the complementizer que) or an NP subject, whereas a noun like lápis (pencil) can only
take an NP subject.

(30) a. [NP-SUBJ Isso
that

] é
is

[NP um
a

facto.
fact

]

That is a fact.

b. [NP-SUBJ Isso
that

] é
is

[NP um
a

lápis.
pencil

]

That is a pencil.

c. É
is

[NP um
a

facto
fact

] [CP-SUBJ que
that

continuam
they continue

a
to

ser
be

vagos
vague

relativamente
relatively

a
to

muitos
many

detalhes.
details

]

It is a fact that they remain vague about many details.

d. * É
is

[NP um
a

lápis
pencil

] [CP-SUBJ que
that

continuam
they continue

a
to

ser
be

vagos
vague

relativamente
relatively

a
to

muitos
many

detalhes.
details

]

In order to contemplate these cases in future versions of LXGram, the constraints on the feature
SUBJ would have to be made different. We do not develop further on that here. In any case, as
the examples above make clear, the projection of subjects of nouns is more peripheral than the NP
boundaries. Within the NP, the SUBJ feature of nouns should therefore simply percolate and not be
constrained to be empty. The implementation presented below respects this requirement.

4.4 Determiners

Determiners select a constituent with a value of MARKING incompatible with the value of their MARK

feature, so that they do not iterate. Their HEAD is of type determiner, (in a preliminary version to be
worked out further in the discussion below) defined as:

determiner

MARKER

pre-only-marker-min

SELECT|LOCAL|CAT

HEAD noun
MARKING no-det-marking

MARK saturated

They are responsible for introducing quantifier semantics. The type used in the lexical entries for
determiners thus has the following constraints, among others:

74 CHAPTER 4. NP SYNTAX AND SEMANTICS

SYNSEM|LOCAL

CAT|HEAD

determiner

MARKER|SELECT|LOCAL|CONT|HOOK

LTOP 1

INDEX 2

CONT

HOOK|LTOP 3

RELS

LBL 3

ARG0 2

RSTR 4

HCONS

qeq
HARG 4

LARG 1

There are other constraints in lexical types that we will systematically ignore in the following
presentation, for the sake of simplicity. These include constraints on the NON-LOCAL features and the
VAL features. In the case of determiners and many nominal constituents, all of them are empty, and
we omit them in order to present more concise feature structures.

The feature PRED in the relation introduced by the determiner (the sole element of RELS in the
above AVM) is filled in in each lexical entry (it is not shown in that AVM — see Section 2.4).1 For the
definite article its value is “_o_q_rel” in LXGram. The semantics of the definite article is equivalent to
λP.λQ._o_q(x,P(x),Q(x)).

4.4.1 Example

The example in Figure 4.3 displays the syntactic structure and the semantics for the sentence o carro

avariou (the car broke down). The MRS representation there is equivalent to _o_q(x2, _carro_n(x2),

_avariar(e,x2)).
In order to understand that example, it is necessary to consider the semantic constraints on the

lexical type for intransitive verbs (in addition to the syntactic constraints on the same kind of verbs,
presented above):

SYNSEM|LOCAL

CAT|VAL|SUBJ

〈

[

LOCAL|CONT|HOOK|INDEX 3
]

〉

CONT

HOOK

LTOP 1 h
INDEX 2 e

RELS

LBL 1

ARG0 2

ARG1 3

HCONS {}

These constraints ensure that the INDEX of the subject is the second argument of the verb’s relation,
the first being an event variable (see Section 2.3.3).

1The feature RSTR is appropriate for the type quantifier-relation, which is a subtype of relation, which is defined to have a feature PRED

(denoting the relation’s name). The type quantifier-relation also has the feature BODY. After type inference and type expansion, the features
PRED and BODY are added to the relation that is the sole member of RELS in the above AVM, because of the constrained RSTR.

4.4. DETERMINERS 75

S

subj-head-phrase

SS|LOC

CAT

HEAD 10 verb

VAL

[

SUBJ 〈〉

COMPS 8 〈〉

]

CNT

HOOK

[

LTOP h1

INDEX e2

]

RELS A

LBL h3 h
PRED “_o_q_rel”
ARG0 x4 x
RSTR h5 h
BODY h

∪ B

LBL h6 h
PRED “_carro_n_rel”
ARG0 x4

∪ C

LBL h7 h
PRED “_avariar_v_rel”
ARG0 e2 e
ARG1 x4

HCONS

qeq
HARG h1

LARG h7

∪ D

qeq
HARG h5

LARG h6

∪ E {}∪ F {}

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H

NP

functor-head-phrase

SS 9

LOC

CAT

[

HEAD 11 noun
MARKING saturated

]

CNT

HOOK

[

LTOP h3

INDEX x4

]

RELS A ∪ B

HCONS D ∪ E

�
�

�
�

�
�

�
�

��

H
H

H
H

H
H

H
H

HH

D

SS|LOC|CNT

HOOK|LTOP h3

RELS A

HCONS D

o

N

SS|LOC

CAT

[

HEAD 11

MARKING basic-marking

]

CNT

HOOK

[

LTOP h6

INDEX x4

]

RELS B

HCONS E

carro

VP

SS|LOC

CAT

HEAD 10

VAL

SUBJ
〈

9
〉

COMPS 8

CNT

HOOK

[

LTOP h7

INDEX e2

]

RELS C

HCONS F

avariou

Figure 4.3: Example of the semantics of determiners. The sentence is o carro avariou (the car broke down). SS
abbreviates SYNSEM, LOC abbreviates LOCAL, and CNT abbreviates CONT.

76 CHAPTER 4. NP SYNTAX AND SEMANTICS

The constraints on the lexical type for nouns with no arguments relevant for this example are:

SYNSEM|LOCAL

CAT

HEAD noun

VAL

SUBJ 〈〉

COMPS 〈〉

MARKING basic-marking

CONT

HOOK

LTOP 1 h
INDEX 2 x

RELS

LBL 1

ARG0 2

HCONS {}

These constraints make the variable that is in the argument of the noun’s relation available in the
INDEX feature of the noun.

Some of the constraints on subj-head-phrase assumed here are also relevant for that example:

SYNSEM|LOCAL

CAT

HEAD 1 verb

VAL

SUBJ 〈〉

COMPS 2

CONT

HOOK

LTOP 3

INDEX 4

RELS A ∪ B

HCONS

qeq
HARG 3

LARG 5

∪ C ∪ D

NON-HEAD-DTR|SYNSEM 6

LOCAL|CONT

RELS A

HCONS C

HEAD-DTR|SYNSEM|LOCAL

CAT

HEAD 1

VAL

SUBJ
〈

6
〉

COMPS 2 olist

CONT

HOOK

LTOP 5

INDEX 4

RELS B

HCONS D

4.5. PREDETERMINERS 77

4.5 Predeterminers

Saturated NPs can be introduced by a determiner (Position II) or a predeterminer (Position I):

(31) a. [NP OsD
the

seres humanos
human beings

] são
are

livres.
free

Human beings are free.

b. [NP TodosPreD
all

osD
the

seres humanos
human beings

] são
are

livres.
free

All human beings are free.

In the first case the quantifier relation of the NP comes from the determiner, but in the second
case it comes from the predeterminer. When a predeterminer introduces an NP, a determiner must be
present (32).

(32) a. todas
all

as
the

pessoas
people

all (the) people

b. todas
all

aquelas
those

pessoas
people

all those people

c. * todas
all

pessoas
people

The last example is actually a possible NP in Brazilian Portuguese. More on this is said below.
Determiners that co-occur with predeterminers must thus be different from determiners intro-

ducing an NP, since the former contribute no quantifier semantics but the latter do. Multiple lexical
items are required in view of the fact that it is not possible to underspecify the number of elementary
predications that a given lexical item contributes to the MRS representation.

In order to model these restrictions, the type hierarchy under marking can be made to look like in
Figure 4.4.

saturated

marking

non-saturated

no-det-marking

basic-marking

non-saturated-det-marking

Figure 4.4: Type hierarchy under marking (version 2/6). Previous version on p. 72. Final version on p. 118.

78 CHAPTER 4. NP SYNTAX AND SEMANTICS

The lexical entries for determiners that contribute quantifier semantics and appear at the left edge
of NPs (the form os in (31a)) are constrained to have a head type like:

determiner

MARKER

pre-only-marker-min

SELECT|LOCAL|CAT

HEAD noun
MARKING no-det-marking

MARK saturated

The constraints on the head of determiners that follow predeterminers and contribute no seman-
tics (the form os in (31b)) are:

determiner

MARKER

pre-only-marker-min

SELECT|LOCAL|CAT

HEAD noun
MARKING no-det-marking

MARK non-saturated-det-marking

We can factor out the commonalities between the two kinds of determiners by defining the HEAD

type determiner as:

determiner

MARKER

pre-only-marker-min

SELECT|LOCAL|CAT

HEAD noun
MARKING no-det-marking

With this definition, the value of MARK is then further specified in the lexical types, yielding the
results just presented.

Summing up, determiners that follow predeterminers carry no semantics and have a MARK feature
with the value det-marking-nonsat. They also have the HOOK of their sister node (so that the LTOP of
the mother node in functor-head-phrases and in functor-head-phrases, which comes from the functor
daughter, is the same as the head daughter’s LTOP):

SYNSEM|LOCAL

CAT|HEAD

determiner
SELECT|LOCAL|CONT|HOOK 1

MARK non-saturated-det-marking

CONT

HOOK 1

RELS {}

HCONS {}

Determiners that do not follow predeterminers have quantifier semantics and produce saturated
noun-headed phrases immediately:

4.5. PREDETERMINERS 79

SYNSEM|LOCAL

CAT|HEAD

determiner

SELECT|LOCAL|CONT|HOOK

LTOP 1

INDEX 2

MARK saturated

CONT

HOOK|LTOP 3

RELS

LBL 3

ARG0 2

RSTR 4

HCONS

qeq
HARG 4

LARG 1

Predeterminers have a head type like:

predeterminer

MARKER

pre-only-marker-min
SELECT|LOCAL|CAT|HEAD noun

PREHEAD

SELECT|LOCAL|CAT|MARKING non-saturated-det-marking
MARK saturated

They require the presence of a semantically vacuous determiner (therefore they select for a sister
node with MARKING of type non-saturated-det-marking). They produce a saturated phrase, since their
feature MARK is of type saturated.

Figure 4.5 shows the syntactic analysis and the semantic representation derived for the NP as

pessoas (the people). Figure 4.6 presents the same pieces of information for the NP todas as pessoas (all

people).
Predeterminers can also appear postnominally, as in (33). As the second example shows, they

occupy an NP internal position (Position VIII). This means that syntactic and semantic scope do not
match in such structures, and more features are therefore needed to pass the relevant information
along the syntax tree. We will not elaborate on this issue, as this is left to future work.

(33) a. as
the

pessoas
people

todas
all

all (the) people
b. as

the
pessoas
people

todas
all

dessa
from that

aldeia
village

all (the) people from that village

To account for Brazilian Portuguese todo (32c), we can resort to positing more than one lexical
entries for todo. The constraints associated with the HEAD attribute of this item only differ from the
ones of the head type predeterminer above in that, instead of selecting for a constituent with MARKING

non-saturated-det-marking, this item selects for an element with MARKING no-det-marking (i.e. this item
is encoded as a determiner).

80 CHAPTER 4. NP SYNTAX AND SEMANTICS

NP

functor-head-phrase

SS|LOC

CAT

[

HEAD 1 noun
MARKING 2 saturated

]

CONT

RELS A

LBL h
PRED “_o_q_rel”
ARG0 x1 x
RSTR h1 h
BODY h

∪ B

LBL h2

PRED “_pessoa_n_rel”
ARG0 x1

HCONS C

qeq
HARG h1

LARG h2

∪ D {}

�
�

�
�

�
�

�
�

�
�

��

H
H

H
H

H
H

H
H

H
H

HH

D

SS|LOC

CAT|HEAD|MKR

[

SELECT 3

MARK 2

]

CONT

[

RELS A

HCONS C

]

as

N

SS 3

LOC

CAT

[

HEAD 1 noun
MARKING basic-marking

]

CONT

[

RELS B

HCONS D

]

pessoas

Figure 4.5: Example of a determiner in NP initial position. The NP is as pessoas (the people).
SS abbreviates SYNSEM, LOC abbreviates LOCAL, MKR abbreviates MKR. The MRS is equivalent to
λP._o_q(x,_pessoa_n(x),P(x)), with the possibility of other quantifiers inside the restrictor (second argument)
of the _o_q quantifier relation.

4.5. PREDETERMINERS 81

NP

functor-head-phrase

SS|LOC

CAT

[

HEAD 1 noun
MARKING 2 saturated

]

CONT

RELS A

LBL h
PRED “_todo_q_rel”
ARG0 x1 x
RSTR h1 h
BODY h

∪ B {}∪ C

LBL h2

PRED “_pessoa_n_rel”
ARG0 x1

HCONS D

qeq
HARG h1

LARG h2

∪ E {}∪ F {}

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H

PreD

SS|LOC

CAT|HEAD|MKR

[

SELECT 4

MARK 2

]

CONT

[

RELS A

HCONS D

]

todas

N

functor-head-phrase

SS 4

LOC

CAT

[

HEAD 1

MARKING 5 non-saturated-det-marking

]

CONT

[

RELS B ∪ C

HCONS E ∪ F

]

�
�

�
�

�
�

�
�

�
��

H
H

H
H

H
H

H
H

H
HH

D

SS|LOC

CAT|HEAD|MKR

[

SELECT 6

MARK 5

]

CONT

[

RELS B

HCONS E

]

as

N

SS 6

LOC

CAT

[

HEAD 1

MARKING basic-marking

]

CONT

[

RELS C

HCONS F

]

pessoas

Figure 4.6: Example of a determiner preceded by a predeterminer. The NP is todas as pessoas (all peo-
ple). SS abbreviates SYNSEM, LOC abbreviates LOCAL, MKR abbreviates MKR. The MRS is equivalent to
λP._todo_q(x,_pessoa_n(x),P(x)), with the possibility of other quantifiers inside the restrictor (second argu-
ment) of the _todo_q quantifier relation.

82 CHAPTER 4. NP SYNTAX AND SEMANTICS

4.6 Modifying Adjectives

On a first approximation, adjectives select for a constituent with [MARKING basic-marking] and pro-
duce a node with the same level of saturation:

adjective

MARKER

SELECT|LOCAL|CAT

HEAD noun
MARKING basic-marking

MARK basic-marking

As a consequence, they are allowed to recur.
Portuguese has prenominal and postnominal adjectives. Potentially spurious attachment ambigu-

ities will be produced for a sequence AP1-Noun-AP2: [AP1 [Noun AP2]] and [[AP1 Noun] AP1].
Although spurious ambiguity is innocuous, it is also a source of inefficiency, as it causes the parser
to perform more computations than needed. It is straightforward to complicate the type hierarchy of
marking to control this, too.

Examples like the one in (34) argue in favor of the structure [AP1 [Noun AP2]], since this NP can
describe someone who is not Chinese. Accordingly, we want to provide to such NP semantics like
λP._um_q(x,_ f also_a(e1,_médico_n(x)∧_chinês_a(e2,x)),P(x)).2 It does not describe a Chinese person
who is a fake doctor (i.e. λP._um_q(x,_ f also_a(e1,_médico_n(x))∧_chinês_a(e2,x),P(x))). Assuming
syntactic scope and semantic scope match, the structure [AP1 [Noun AP2]] is justified.3

(34) um
a

falso
fake

médico
doctor

chinês
Chinese

a fake Chinese doctor

We can add types to the type hierarchy under marking to force this structure. Figure 4.7 displays a
revised hierarchy under marking.

Prenominal adjectives can be specified to have the constraint [MARK prenom-adj-marking] and
select for nominal projections with [MARKING prenom-adj-or-basic-marking], while postnominal adjec-
tives select for sister nodes with [MARKING basic-marking] and also bear the value basic-marking for
their MARK attribute. The type of HEAD in adjectives looks like:

adjective

MARKER

SELECT|LOCAL|CAT

HEAD noun
MARKING prenom-adj-or-basic-marking

MARK prenom-adj-or-basic-marking

In the lexical types for adjectives, we distinguish between the adjectives that can only precede the
noun, the ones that can only follow it and the ones that can occur in either position. The following
examples illustrate these three classes. An adjective like mero (mere) can only precede the noun, an
adjective like japonês (Japanese) can only follow the noun, and an adjective like falso (false) can precede
or follow it.

2We can assume that the semantic representation of falso (fake), λP∈D〈e,t〉
.λx∈De ._ f also_a(e,P(x)), means λP.λx.¬P(x).

3It is not required that syntactic and semantic scope match, because it is possible to manipulate feature structures, but it is desirable that
they do, since implementation becomes more straightforward if they match. We thus assume that syntax and semantics match in the absence
of a compelling argument against it.

4.6. MODIFYING ADJECTIVES 83

saturated

marking

non-saturated

no-det-marking non-saturated-det-marking

prenom-adj-or-basic-marking

prenom-adj-marking basic-marking

Figure 4.7: Type hierarchy under marking (version 3/6). Previous version on p. 77. Final version on p. 118.

(35) a. Atacaram
they attacked

um
a

mero
mere

inspector.
inspector

They attacked a mere inspector.
b. * Atacaram

they attacked
um
an

inspector
inspector

mero.
mere

c. * Atacaram
they attacked

um
a

japonês
Japanese

inspector.
inspector

d. Atacaram
they attacked

um
an

inspector
inspector

japonês.
Japanese

They attacked a Japanese inspector.
e. Atacaram

they attacked
um
a

falso
false

inspector.
inspector

They attacked a false inspector.
f. Atacaram

they attacked
um
an

inspector
inspector

falso.
false

They attacked a false inspector.

The lexical types for the adjectives that can precede the noun have the constraints:

SYNSEM|LOCAL|CAT|HEAD

adjective
MARKER|PREHEAD|MARK prenom-adj-marking

The lexical types for the ones that can follow the noun are constrained with:

SYNSEM|LOCAL|CAT|HEAD

adjective

MARKER|POSTHEAD

SELECT|LOCAL|CAT|MARKING basic-marking
MARK basic-marking

The adjectives that can follow or precede the noun inherit all these constraints. The ones that can
only precede it are given a lexical type that inherits from the type where the constraints on PREHEAD

are stated and is further constrained with:

84 CHAPTER 4. NP SYNTAX AND SEMANTICS

[

SYNSEM|LOCAL|CAT|HEAD|MARKER pre-only-marker-min
]

Likewise, the lexical type for the adjectives that can only follow the noun inherits from the type
above that has a constrained POSTHEAD feature and is defined to also bear:

[

SYNSEM|LOCAL|CAT|HEAD|MARKER post-only-marker-min
]

All lexical types for nouns have [MARKING basic-marking], as before, since nouns have the same
syntactic distribution of noun-adjective sequences: they can combine with another adjective to their
right, or with a prenominal adjective. Under this analysis, nouns have a syntactic distribution differ-
ent from adjective-noun sequences, as the latter cannot combine with an adjective to their right.

With this system of constraints, the noun phrase um médico chinês falso receives a semantic rep-
resentation equivalent to um falso médico chinês, equivalent to the lambda formula presented above.
On the other hand, a noun phrase like um médico falso Chinês (a fake doctor who is Chinese) receives se-
mantics equal to λP._um_q(x,_ f also_a(e1,_médico_n(x))∧_chinês_a(e2,x),P(x)), based on the syntactic
structure [um [[médico falso] chinês]].

Adjectives are allowed to iterate in both positions (prenominal and postnominal). This is borne
out by data like:

(36) a. Era
it was

um
a

grande,
great

grande
great

filme.
movie

It was a great, great movie.
b. Era

it was
um
a

filme
movie

chato,
boring

chato.
boring

It as a boring, boring movie.

It is worth pointing out that we cannot properly capture the meaning difference between an N like
filme chato (boring movie), which receives semantics equivalent to λx._ f ilme_n(x)∧_chato_a(e1,x), and
an N like filme chato, chato (boring, boring movie), which is assigned an MRS representation equivalent
to λx._ f ilme_n(x)∧ _chato_a(e1,x)∧ _chato_a(e2,x): the two formulas are logically equivalent due to
idempotence of conjunction if we ignore the different event variables. It is not clear that the difference
is truly semantic, anyway. It may simply be a pragmatic effect.

The syntactic analysis produced by LXGram for the NP in (34) (um falso médico chinês — a false

Chinese doctor) is in Figure 4.8, with abridged feature structures.
The structure [[AP1 N] AP2] is blocked, because the phrase with the form [AP1 N] has MARKING

with the value prenom-adj-marking but postnominal adjectives select for a sister node with the value
basic-marking for that feature. There is no unifier for basic-marking and prenom-adj-marking, as can be
seen in Figure 4.7.

4.7 Argumental Adjectives

Semantics

Adjectives that are used as an argument of nouns (37a) display drastically different semantics from
adjectives that modify a noun (37b). Consider the two examples:

(37) a. Viram
they saw

[NP a
the

alunagem
moon landing

americana
American

] na
on the

televisão.
television

They saw the American moon landing on TV.

4.7. ARGUMENTAL ADJECTIVES 85

NP

�
�

�

H
H

H

D

um

N

�
�

�

H
H

H

AP

falso

N
�

�
H

H

N

médico

AP

chinês

functor-head-phrase

ORTH
〈

“um”, “falso”, “médico”, “chinês”
〉

SYNSEM|LOCAL|CAT

[

HEAD 1 noun
MARKING 2 saturated

]

NON-HEAD-DTR

ORTH
〈

“um”
〉

SYNSEM|LOCAL|CAT|HEAD

determiner

MARKER

[

SELECT 3

MARK 2

]

HEAD-DTR

functor-head-phrase

ORTH
〈

“falso”, “médico”, “chinês”
〉

SYNSEM 3

LOCAL|CAT

[

HEAD 1

MARKING 4 prenom-adj-marking

]

NON-HEAD-DTR

ORTH
〈

“falso”
〉

SYNSEM|LOCAL|CAT|HEAD

adjective

MARKER

SELECT 5

PREHEAD

[

SELECT 5

MARK 4

]

HEAD-DTR

head-functor-phrase

ORTH
〈

“médico”, “chinês”
〉

SYNSEM 5

LOCAL|CAT

[

HEAD 1

MARKING 6 basic-marking

]

NON-HEAD-DTR

ORTH
〈

“chinês”
〉

SYNSEM|LOCAL|CAT|HEAD

adjective

MARKER

SELECT 7

POSTHEAD

[

SELECT 7

MARK 6

]

HEAD-DTR

ORTH
〈

“médico”
〉

SYNSEM 7

LOCAL|CAT

[

HEAD 1

MARKING basic-marking

]

Figure 4.8: Syntactic analysis for an NP with a prenominal and a postnominal adjective

86 CHAPTER 4. NP SYNTAX AND SEMANTICS

b. Viram
they saw

[NP um
a

carro
car

americano
American

] naquela
on that

rua.
street

They saw an American car on that street.

The NP in the first example has semantics quite similar to a sentence like Os americanos alunaram

(The Americans landed on the moon). The semantics for this sentence could be

_o_q(x,_americano_n(x),_alunar_v(e,x))

For the NP in the first example (a alunagem americana — the American moon landing) we could thus
think of the semantics

λP∈D〈e,t〉
._o_q(x,_o_q(y,_americano_n(y),_alunagem_n(x,y)),P(x))

The semantics for the noun alunagem is

λQ∈D〈〈e,t〉t〉
.λx∈De .Q(λy∈De .alunagem(x,y))

Assuming that semantically, the noun is the functor and the adjective is the argument, the semantics
for the argumental adjective in (37a) would have to be

λP∈D〈e,t〉
._o_q(z,_americano_n(z),P(z))

The most simple semantics for the modifying adjective americano in (37b) is

λP∈D〈e,t〉
.λx∈De .P(x)∧_americano_a(e,x)

The semantics for the NP in (37b) is thus

λP∈D〈e,t〉
._um_q(x,_carro_n(x)∧_americano_a(e,x),P(x))

The same adjective in these two contexts presents very different semantics. There are two options:
to have multiple lexical entries for the adjectives that can occur as modifiers and as arguments; to use
an optional lexical rule to change the meaning and syntactic properties of such adjectives, producing
one of the versions from the other, which would be in the lexicon.

The lexical rule approach is certainly more appealing, since adjectives that can occur as arguments
would simply receive a special lexical type in their lexical entry, denoting this property. The problem
is that we cannot produce one of the semantic representations from the other with the machinery
in the LKB, because we cannot manipulate strings, and the mapping between the relation names
_americano_n and _americano_a requires string manipulation.

We address this by providing a slightly different semantics to these adjectives when they are used
as modifiers:

λP∈D〈e,t〉
.λx∈De ._o_q(y,americano_n(y),P(x)∧abstract_a(e,x,y))

Using the MRS format, this semantics can be easily produced from the semantics the adjective
displays when it occurs as an argument. Therefore, the lexical entries for the adjectives that can occur
in both positions have argumental semantics, and an optional lexical rule adds the abstract_a relation.

Under this model, the NP o carro americano receives the semantics:

λP∈D〈e,t〉
._o_q(x,_o_q(y,americano_n(y),_carro_n(x)∧abstract_a(e,x,y),P(x))

4.8. NOUN COMPLEMENTATION 87

The relation named abstract_a denotes a relation we cannot determine systematically. In this
example, it links “car” with “Americans” and can be understood as “produced by”. The relation
λx∈De .λy∈De .abstract_a(e,x,y) is intended to mean λx∈De .λy∈De .∃R∈D〈e,〈e,t〉〉

R(x,y).
Adjectives that cannot be used as arguments of nouns (e.g. amarelo — yellow) still receive standard

adjective semantics:
λP∈D〈e,t〉

.λx∈De .P(x)∧_amarelo_a(e,x)

Syntax

A PP complement cannot intervene between a noun and an adjectival complement:

(38) a. a
the

invasão
invasion

americana
American

do
of the Iraq

Iraque

The American invasion of Iraq
b. * a

the
invasão
invasion

do
of the Iraq

Iraque
American

americana

Also, the remaining elements in Position VIII cannot appear before an adjective argument either.
An example with a PP adjunct follows:

(39) a. a
the

alunagem
moon landing

americana
American

de
of

1969
1969

the American moon landing of 1969
b. * a

the
alunagem
moon landing

de
of

1969
1969

americana
American

In LXGram, we use a dedicated syntactic rule similar to Head-Complement constructions that
requires the head daughter to be a noun that selects for a PP complement (cf. “the American moon
landing” with “the moon landing by the Americans”) and the non-head daughter to be an adjective
with argumental semantics.

We can resort to two important subtypes of canonical-synsem (see Figure 2.2 in Section 2.6): lex-
synsem and phrase-synsem. The SYNSEM feature of all words (terminal symbols and lexical rules) is of
type lex-synsem, and the SYNSEM of phrases is of type phrase-synsem. These types are incompatible:
they have no common subtype.

In order to force strict adjacency between the noun head and the adjective argument, all that is nec-
essary is that the head daughter of this syntactic rule dedicated to project adjectival arguments to the
right of a noun be constrained to have a SYNSEM of type lex-synsem. Because of this constraint, nothing
can intervene between the noun and this type of adjective, because, if that happened, a phrasal node
would have to be the head daughter of this construction. This constraint also has the nice side effect
of blocking two adjectival arguments of the same noun. This blocks the following ungrammatical
example:

(40) a. * a
the

invasão
invasion

americana
American

iraquiana
Iraqi

In this special rule, the MARKING value of the mother node is also basic-marking.

4.8 Noun Complementation

Many nouns subcategorize for one or more complements, that can be of different kinds. For the sake
of illustration, here we will focus only on nouns with a single PP complement.

88 CHAPTER 4. NP SYNTAX AND SEMANTICS

The standard HPSG approach to project complements is assumed: subcategorized for comple-
ments are members of a list-valued attribute COMPS in the lexical entry of the corresponding head,
and a syntactic rule projects elements in that list, producing a mother node with a reduced COMPS.

Following many computationally implemented HPSGs, like the LinGO English Resource Gram-
mar or the LinGO Grammar Matrix, strict binary branching is assumed — in the case of multiple
complements, they are discharged one at a time. The Head-Complement syntactic rule or rules there-
fore unify the SYNSEM of the non-head daughter with the first element in the COMPS of the head
daughter, and the COMPS of the mother node is the tail of the COMPS of the head daughter.

An issue in focus here is the relative scope between complements and the various functors. In
Portuguese, the relative order between complements and several adnominal constituents (the ones in
Position VIII in the table in Appendix A) is free. Consider the examples in (41).

(41) a. o
the

consumo
consumption

galopanteAP
ever increasing

[PP de
of

petróleo
oil

]

the ever increasing consumption of oil
b. o

the
consumo
consumption

[PP de
of

petróleo
oil

] galopanteAP
ever increasing

the ever increasing consumption of oil

These examples show that word order between postnominal adjunct adjectives and PP comple-
ments is arbitrary. Similar data can be presented for the other elements in Position VIII.

With other functors, however, word order is not free.
Indeed, PP complements must surface before restrictive relative clauses:

(42) a. o
the

consumo
consumption

[PP de
of

petróleo
oil

] [RelCl que
that

continua
continues

a
to

crescer
increase

]

the consumption of oil that continues to increase
b. * o

the
consumo
consumption

[RelCl que
that

continua
continues

a
to

crescer
grow

] [PP de
of

petróleo
oil

]

The exact constraints on the position of relative clauses within an NP, as they are implemented in
LXGram, are presented in Section 4.13.

Since complements occupy the same word order slot as the functors that give rise to constituents
with basic-marking, the relative syntactic scope between complements and the remaining functors
must be the same as the relative scope between basic-marking functors and the rest.

Obviously, if complement placement is not constrained, many attachment ambiguities will sur-
face. There will be no corresponding differences in the semantics produced, because the semantic
constraints that link the MRS representation for the noun and the MRS representation for its comple-
ments are completely lexical (given in the lexical entries for nouns) and not affected by syntax.

There are two possible solutions to prevent this spurious overgeneration. The first one is to have
all functors except the ones that occur in Position VIII select for a projection with empty COMPS (or
with COMPS of type olist, as presented in Section 2.6). Since the ones that occur in this slot are the ones
most deeply embedded, if a complement is projected, it can only occur also in this position.

The second solution involves constraining the value of MARKING in the mother node of Head-
Complement rules to be of type basic-marking.

In either case, Head-Complement rules unify the MARKING value of the head daughter with the
MARKING value of the mother node:

4.9. PRENOMINAL POSSESSIVES 89

NP

SS|LOC|CAT

HEAD 1 noun
VAL|COMPS 2 null u olist = onull
MARKING 3 saturated

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H
HH

D

SS|LOC|CAT|HEAD|MKR

[

SEL 4

MARK 3

]

um

N

SS 4

LOC|CAT

HEAD 1

VAL|COMPS 2

MARKING 5 basic-marking u no-det-marking
= basic-marking

�
�

�
�

�
�

�
�

�
�
�

H
H

H
H

H
H

H
H

H
H

H

N

SS|LOC|CAT

HEAD 1

VAL|COMPS 7

[

FIRST 6

REST 2

]

MARKING 5 basic-marking

�
�

�
�

�
�

�
�

�
��

H
H

H
H

H
H

H
H

H
HH

N

SS 8

LOC|CAT

HEAD 1

VAL|COMPS 7

MARKING basic-marking

membro

AP

SS|LOC|CAT|HEAD|MKR

[

SEL 8

MARK 5

]

provável

PP
[

SS 6
]

do IRA

Figure 4.9: Syntactic analysis for um membro provável do IRA (a probable member of the IRA). SS abbreviates
SYNSEM, LOC abbreviates LOCAL, MKR abbreviates MARKER, and SEL abbreviates SELECT.

SYNSEM|LOCAL|CAT|MARKING 1

HEAD-DTR|SYNSEM|LOCAL|CAT|MARKING 1

The second solution has an important advantage over the first one: the level of saturation at which
complements attach is stated in a single place, a type for Head-Complement constructions. This is the
solution used in LXGram.

Figure 4.9 shows the analysis of an NP with an adjective intervening between the head and the
complement. The NP is um membro provável do IRA (a probable member of the IRA). In this example the
node labeled N is produced via a Head-Complement construction. The remaining phrasal nodes are
produced via functor-head-phrase or head-functor-phrase.

The semantic representation for this NP produced by LXGram is equivalent to

λP∈D〈e,t〉
.proper_q(x1,named(x1,“IRA′′),_um_q(x2,_provável(e,_membro_n(x2,x1)),P(x2)))

4.9 Prenominal Possessives

In definite NPs, possessives can appear prenominally (43a), while postnominal NPs can occur in
indefinite NPs (43b). However, demonstratives license both prenominal and postnominal possessives
(44).

90 CHAPTER 4. NP SYNTAX AND SEMANTICS

(43) a. A
the

minha
my

bicicleta
bicycle

tem
has

um
a

pneu
tire

furado.
flat

My bicycle has a flat tire.
b. Uma

a
bicicleta
bicycle

minha
my/mine

tem
has

um
a

pneu
tire

furado.
flat

A bicycle of mine has a flat tire.

(44) a. Aquela
that

tua
your

bicicleta
bicycle

tem
has

um
a

pneu
tire

furado.
flat

That bicycle of yours has a flat tire.
b. Aquela

that
bicicleta
bicycle

tua
your/yours

tem
has

um
a

pneu
tire

furado.
flat

That bicycle of yours has a flat tire.

Other contexts allow prenominal possessives. Examples are vocatives (48) and predicative nomi-
nals lacking a determiner (45b).

(45) a. Minha
my

senhora,
lady,

eu
I

quero
want

a
the

mala.
bag

I’d like the bag, Miss.
b. É

is
teu
your

irmão?
brother

Is he your brother? (a brother of yours)

Postnominal possessives are covered in Section 4.14, as well as the mechanism to control relative
word order between noun and possessive.

Prenominal possessives always occur after the determiner (article, demonstrative, . . .), if it is
present, and they always precede cardinals, if both occur (46).

(46) a. as
the

minhas
my

duas
two

bicicletas
bicycles

my two bicycles
b. * minhas

my
as
the

duas
two

bicicletas
bicycles

c. * as
the

duas
two

minhas
my

bicicletas
bicycles

The syntax of prenominal possessive can be accounted for via an extension of the type hierarchy
of marking, presented in Figure 4.10. Two types have been added: poss-marking and no-poss-marking.
The first one is the MARKING value of a constituent that contains a prenominal possessive, the second
type is the value of a constituent with no such element.

A value of HEAD for possessives can then be like:

possessive

MARKER

SELECT|LOCAL|CAT

HEAD noun
MARKING no-poss-marking

MARK poss-marking

This accounts for prenominal possessives after a definite article or demonstrative determiner.

4.9. PRENOMINAL POSSESSIVES 91

saturated

marking

non-saturated

no-det-marking non-saturated-det-marking

poss-marking no-poss-marking

prenom-adj-or-basic-marking

prenom-adj-marking basic-marking

Figure 4.10: Type hierarchy under marking (version 4/6). Previous version on p. 83. Final version on p. 118.

We will consider that the other contexts where prenominal possessives are allowed to occur (with
no preceding determiner) are not contexts where full NPs occur. For instance, definite articles and
demonstratives are impossible in vocatives, as (47) shows. Possessives occur prenominally in voca-
tives (48).

(47) a. (* A)
the

senhora,
lady,

eu
I

quero
want

a
the

mala.
bag

I’d like the bag, Miss.
b. * Essa

that
senhora,
lady,

eu
I

quero
want

a
the

mala
bag

(48) a. Minha
my

senhora,
lady

eu
I

quero
want

a
the

mala.
bag

I’d like the bag, Madam.
b. * Senhora

lady
minha,
my/mine

eu
I

quero
want

a
the

mala.
bag

Noun predicates can also not be full NPs. In (49) a singular count noun occurs in this position, but
bare singular NPs are generally not acceptable in European Portuguese (50). Possessives also occur
prenominally in such contexts (51).

(49) Ele
he

é
is

pianista.
pianist

He is a pianist.

(50) * Ele
he

viu
saw

pianista.
pianist

(51) a. É
is

teu
your

irmão?
brother

Is he your brother?

92 CHAPTER 4. NP SYNTAX AND SEMANTICS

b. * É
is

irmão
brother

teu?
your/yours

These cases can thus be viewed as not involving a full (saturated) NP. For instance, predicative
ser (be) can be defined as selecting for a complement headed by a noun but with a value of marking
different from saturated (e.g. non-saturated).

In Brazilian Portuguese, possessives can introduce an NP. In the corresponding phrases in Euro-
pean Portuguese the definite article must precede the possessive. A Brazilian example is in (52).

(52) Minha
my

bicicleta
bicycle

tem
has

um
a

pneu
tire

furado.
flat

My bicycle has a flat tire.

Since quantifier semantics is generally introduced in the predeterminer or determiner slots (Posi-
tion I and Position II in Appendix A), the Brazilian possessives must have different lexical items from
the possessives occurring with determiners, because these do not carry quantifier semantics, but the
former must do so (see the next section for semantic representations of possessives). Also, they will
present different constraints related to MARKING. More specifically, the feature MARK bears the value
saturated.

Also note that NPs introduced by a possessive, like the one in (52), do not have readings charac-
teristic of bare NPs — but bare NPs headed by a singular count noun are actually possible in Brazilian
Portuguese (Munn and Schmitt, 1998; Müller, 2002)) —, so these NPs should not be considered to be
bare NPs.

Prenominal possessives following a definite article or other determiner are also attested in Brazil-
ian Portuguese.

The analysis just presented also covers sequences made up by a predeterminer todo (Section 4.5)
followed immediately by a possessive, which is a possibility in Brazilian Portuguese. These sequences
are derived by the lexical entry for todo that is specific to Brazilian Portuguese and a lexical entry for
a possessive that is available to both varieties.

4.9.1 Possessives as Arguments of Nouns

Possessives can realize arguments of noun relations, which in Portuguese are in the unmarked case
realized by postnominal material (53a). Consider (53b).

(53) a. o
the

irmão
brother

da
of the

Ana
Ana

Ana’s brother
b. o

the
seu
her

irmão
brother

her brother

In both examples, irmão denotes a two-place predicate. In (53a) the second argument is realized
by the PP de Ana, and in (53b) it surfaces as seu.

Possessives are implemented in LXGram as carrying personal pronoun semantics. Personal pro-
nouns are associated with two relations pronoun_q_rel and pronoun_n_rel. The second one fills the
restrictor of the quantifier relation pronoun_q_rel, so personal pronouns receive semantics similar to
λP.pronoun_q(x, pronoun_n(x),P(x)). This accounts for the deictic use of personal pronouns (their use

4.9. PRENOMINAL POSSESSIVES 93

as denoting an entity that is recovered from context, although LXGram does not recover that en-
tity from the context, as it only parses isolated sentences).4 This treatment of personal pronouns is
a simplification. Consider a counter-example: If anyone knew that, he wouldn’t tell. We could adopt
an MRS representation inspired by the treatment of personal pronouns in Discourse Representa-
tion Theory (Kamp and Reyle, 1993) in order to address this issue. It would then be equivalent to
λP.pronoun_q(x,x = y), where y is free (to be recovered from the context). However, we assume the
first representation shown, in order to conform to the other computational HPSGs.

When possessives do not fill a noun argument, an extra relation is included between the index of
the personal pronoun and that of the head noun, called possessive_a_rel. An example is in Figure 4.11.
The MRS in that example (o seu cavalo — his/her/their horse) corresponds to

λP._o_q(x2, pronoun_q(x7, pronoun_n(x7), possessive_a(x2,x7)∧_cavalo_n(x2)),P(x2))

and to

λP.pronoun_q(x7, pronoun_n(x7),_o_q(x2, possessive_a(x2,x7)∧_cavalo_n(x2),P(x2)))

The two are equivalent under the assumption that λP.pronoun_q(x, pronoun_n(x),P(x)) is equivalent
λP.P(c) (both reduce to λP._o_q(x2, possessive_a(x2,c)∧_cavalo_n(x2)),P(x2))).

When possessives realize noun arguments, this relation is not present in the MRS. Instead, the
index of the personal pronoun occurs as the second argument of the relation corresponding to the
head noun. Figure 4.12 contains an MRS example of argumental possessives, for the NP o seu irmão

(his/her/their brother). The MRS in that example is equivalent to

λP._o_q(x2, pronoun_q(x7, pronoun_n(x7),_irmão_n(x2,x7)),P(x2))

and to
λP.pronoun_q(x7, pronoun_n(x7),_o_q(x2,_irmão_n(x2,x7)),P(x2))

Both are intended to mean λP._o_q(x2,_irmão_n(x2,c),P(x2)).
Because the number of elementary predications contributed to an MRS by these two sorts of el-

ements (argumental vs. modifying possessives) is different, multiple lexical entries are required for
possessives.

Argumental possessives and modifying possessives have the same syntactic distribution, though.
This creates problems for the treatment of argumental possessives, since we have assumed in Sec-
tion 4.8 that noun complements are saturated at a much lower level.

The first question to ask is whether projections of prenominal argumental possessives should be
produced by some Head-Complement construction or by the functor-head-phrase discussed above.

4For instance, for a sentence like “he left”, we can think of the semantics leave(c), where c is a constant. We can say that “he” denotes c

and “leave” denotes λx∈De .leave(x), and that the denotation of the sentence is the denotation of the VP applied to the denotation of the NP
subject — (λx.leave(x))c. Equivalently, we can also say that “he” denotes λP∈D〈e,t〉

.P(c), with the same semantics for the verb as before. In
this case, the denotation of the sentence is the denotation of the NP subject applied to the denotation of the VP — (λP.P(c))(λx.leave(x)).
This is more convenient, because the denotation of sentences with an NP subject that has quantificational force, like “all men left”, is
also the denotation of the NP subject applied to the denotation of the VP — (λP.∀x[man(x) → P(x)])(λx.leave(x)). The expression
λP.pronoun_q(x, pronoun_n(x),P(x)) can be seen as meaning λP.P(c), as they are both of the semantic type 〈〈e,t〉,t〉 (a set A of sets of
entities, or a function from a set of entities to truth values that yields truth just in case its argument is in A).

In the MRS universe, the representation used here is employed in several other grammars. We chose to also use it in LXGram, in order to
have representations similar to the other grammars.

The treatment of NPs with proper names is similar. Instead of saying that e.g. Mary denotes a constant m, we say it denotes λPinD〈e,t〉
.P(m),

for the same reasons. In LXGram “a Maria” receives the MRS equivalent of λP.proper_q(x,named(x,“Maria′′),P(x)).

94 CHAPTER 4. NP SYNTAX AND SEMANTICS

mrs
LTOP h1 h
INDEX x2 x

RELS

〈

_o_q_rel
LBL h1

ARG0 x2

RSTR h4 h
BODY h3 h

,

possessive_a_rel
LBL h5 h
ARG0 e6 e
ARG1 x2

ARG2 x7

[

x
PNG.PERSON 3rd

]

,

pronoun_q_rel
LBL h8 h
ARG0 x7

RSTR h9 h
BODY h10 h

,

pronoun_n_rel
LBL h11 h
ARG0 x7

,

_cavalo_n_rel
LBL h5

ARG0 x2

〉

HCONS

〈

qeq
HARG h4

LARG h5

,

qeq
HARG h9

LARG h11

〉

Figure 4.11: MRS fragment corresponding to the NP o seu cavalo (his/her/their horse).

mrs
LTOP h1 h
INDEX x2 x

RELS

〈

_o_q_rel
LBL h1

ARG0 x2

RSTR h4 h
BODY h3 h

,

pronoun_q_rel
LBL h5 h

ARG0 x6

[

x
PNG.PERSON 3rd

]

RSTR h7 h
BODY h8 h

,

pronoun_n_rel
LBL h9 h
ARG0 x6

,

_irmão_n_-de-_rel
LBL h10 h
ARG0 x2

ARG1 x6

〉

HCONS

〈

qeq
HARG h4

LARG h10

,

qeq
HARG h7

LARG h9

〉

Figure 4.12: MRS fragment corresponding to the NP o seu irmão (his/her/their brother).

4.9. PRENOMINAL POSSESSIVES 95

The motivation for considering argumental possessives to be complements is that they are in com-
plementary distribution with PP complements (54a). The motivation for considering them functors is
that they are also in complementary distribution with modifying possessives (54b).

(54) a. * o
the

seu
her

irmão
brother

da
of the

Ana
Ana

b. * o
the

seu
her

seu
her

irmão
brother

If they are treated as functors, then they are unusual in saturating an argument of the head they
select.

If they are complements, then prenominal argumental possessives are unusual in preceding the
head (in Portuguese this only occurs with clitics and fronted constituents).

In LXGram they are implemented as functors. This choice has the advantage of not requiring
more syntactic machinery, but it results in untypical feature structures because, since argumental
possessives are considered functors, they cannot discharge an element from the COMPS list of their
head, in spite of realizing it themselves.

Since they can see the entire SYNSEM of their sister node via the SELECT attributes, they can unify
the index of the personal pronoun relations they introduce with the index of an element in the COMPS

attribute of the nominal projection they select for. This produces the right semantics, namely semantic
representations exactly like the ones produced by Head-Complement constructions.

They place the same constraints on the values of marking as their modifier counterparts. Their
non-iterability is in this way immediately predicted.

It is important to mention that what enables a non-empty COMPS to appear high enough in a tree in
order to be visible by possessives in general is the choice of using type olist instead of null to constrain
the COMPS of NPs, as explained in Section 4.3. Consider the following example:

(55) [NP os
the

[meus
my

[dois
two

irmãos
brothers

]]]

my two brothers

All bracketed phrases in this example are instances of functor-head-phrase and as such have the
same value for the feature COMPS. If NPs were constrained to have an empty COMPS, a unary rule
would be needed to discharge the unexpressed complement of the noun (this rule could simply pass
up the tail of the COMPS of its daughter). It would make sense to have this rule apply in the most em-
bedded position (before the cardinal attaches), since that is where Head-Complement constructions
occur. This way some of the constraints common to unary and binary Head-Complement construc-
tions could be factored out in a single supertype. Discharging all complements in the same position is
also less error-prone and makes the grammar easier to understand, to extend and to debug if needed.
In this scenario, the sister node of the possessive would also have an empty COMPS.

By using the type olist (see Section 2.6) to constrain the COMPS of NPs instead (see Section 4.3),
unrealized complements are visible at the point where possessives attach. For instance, the NP in (55)
receives the following simplified analysis:

96 CHAPTER 4. NP SYNTAX AND SEMANTICS

functor-head-phrase

SYNSEM|LOCAL|CAT

saturated-cat

COMPS 1

ocons

FIRST

unexpressed-synsem
LOCAL|CONT|HOOK|INDEX 2

REST onull

�
�

�
��

H
H

H
HH

D

os

functor-head-phrase
SYNSEM|LOCAL|CAT|COMPS 1

�
�

�
�

��

H
H

H
H

HH

POSS

meus

functor-head-phrase
SYNSEM|LOCAL|CAT|COMPS 1

�
�

�
�

�
��

H
H

H
H

H
HH

CARD

dois

functor-head-phrase

SYNSEM|LOCAL

CAT|COMPS 1

CONT|RELS

{

[

ARG1 2
]

}

irmãos

Here we are assuming that relational nouns, like irmão (brother) above, unify the INDEX of their
complement with the ARG1 of the relation they introduce, so that the entry for irmão would contain
these constraints, among others:

ORTH ”irmão”

SYNSEM|LOCAL

CAT|VAL|COMPS

〈

[

LOCAL|CONT|HOOK|INDEX 1
]

〉

CONT|RELS

{

[

ARG1 1
]

}

Constraints in the lexical types for argumental possessive can then be used to unify the index
associated with the personal pronoun relations they introduce with the index of the first element in
the head’s COMPS:

SYNSEM|LOCAL

CAT|HEAD|MARKER|SELECT|LOCAL|CAT|VAL|COMPS|FIRST|LOCAL|CONT|HOOK|INDEX 1

CONT|HOOK|INDEX 1

Crucially, the possessive cannot simply unify the entire SYNSEM of the head’s complement with
its SYNSEM, for a number of reasons:(1) a cyclic structure would result, a situation that is not allowed
by the systems used; (2) the noun selects for a PP, but a possessive is not a PP — the HEAD feature is
different, for instance, and would not unify —; and (3) the first element of COMPS, which in examples
like (55) is reduced to type olist, is an unexpressed-synsem, but the SYNSEM of the possessive ends up as
a canonical-synsem, since it is realized, and these synsem types are incompatible (see Section 2.6).

The fact that the complement of a noun with a synsem of type unexpressed-synsem is actually real-
ized makes this analysis rather uninteresting.

4.10. CARDINALS, ORDINALS AND MARKERS OF INDEFINITE SPECIFICS 97

Since possessives can only realize PP complements of nouns (and not CPs for instance), argu-
mental possessives must constrain the nominal projection they attach to to have a COMPS whose first
element is a PP:

[

SYNSEM|LOCAL|CAT|HEAD|MARKER|SELECT|LOCAL|CAT|VAL|COMPS|FIRST|LOCAL|CAT|HEAD preposition
]

This constraint, like the constraint above to fix the semantics, is extremely non-local and against
the spirit of HPSG.

Furthermore, it means that nouns do not necessarily have visibility over the entire SYNSEM of their
complement: if nouns constrain it to be a PP, a possessive can detect this and realize it instead, but a
possessive can have constrains on its SYNSEM drastically different from the constraints on the noun’s
complement. A consequence is that if constraints on noun complements must be added in the future
to cover additional phenomena, it may be the case that the definitions for argumental possessives
require modifications as well — the analysis is not extensible.

This is the analysis implemented in LXGram currently. An interesting alternative to the analysis
of prenominal possessives is to treat them as elements extracted from a postnominal position. An
analysis could be envisaged in a way similar to the treatment of long-distance dependencies, but
possibly resorting to other features, so as to not interact with the analysis of unbounded dependencies.
This would explain the paradox of arguments realized by possessives surfacing on the left of their
head, and, under the assumption of a parallelism between sentence structure and NP structure, it
would provide the NP counterpart for the left periphery of sentences.

Modifying possessives can occur with nouns with unsaturated arguments. There are some ex-
amples that are in fact ambiguous this way. For instance, if we consider that a noun like livro/book

has an argument denoting the person who wrote it, the following NP can mean the book that you have

(the interpretation that results from the possessive being a modifier) and the book that you wrote (the
interpretation where the possessive realizes an argument):

(56) a. o
the

teu
your

livro
painting

your book

Unfortunately, NPs like o meu pai (my father) also receive two analyses: one in which the possessive
realizes the noun’s argument, with semantics similar to the representation in Figure 4.12; and another
in which the possessive has modifier semantics, similar to Figure 4.11 The last interpretation is not
natural.

4.10 Cardinals, Ordinals and Markers of Indefinite Specifics

Position IV can be filled in by cardinals, ordinals or markers of indefinite specific NPs, like certo or
determinado (certain).

They can co-occur with each other in almost any order (57), the exception being that ordinals
cannot precede markers of indefinite specifics, as in (57d).

(57) a. os
the

primeiros
first

dois
two

capítulos
chapters

the first two chapters
b. os

the
dois
two

primeiros
first

capítulos
chapters

the first two chapters

98 CHAPTER 4. NP SYNTAX AND SEMANTICS

c. um
a

certo
certain

primeiro
first

capítulo
chapter

a certain first chapter
d. * um

a
primeiro
first

certo
certain

capítulo
chapter

a certain first chapter

Certo is limited to indefinite NPs. Cardinals cannot co-occur with indefinite determiners,5 so to
test the word order possibilities between cardinals and certo, we have to look at NPs that begin with
a cardinal or certo, as in (58). Such NPs are covered in Section 4.11, but (58) already shows that word
order between cardinals and markers of indefinite specifics is in general also unconstrained.

(58) a. dois
two

certos
certain

capítulos
chapters

two certain chapters
b. certos

certain
dois
two

capítulos
chapters

two certain chapters

At most one item of each class can be present (59). They are not repeatable even when an item of
a different sort intervenes (60).

(59) a. * Os
the

dois
two

três
three

carros
cars

avariaram.
broke down

b. * O
the

primeiro
first

segundo
second

lugar
seat

está
is

ocupado.
taken

c. * Um
a

determinado
certain

certo
certain

carro
car

avariou.
broke down

(60) a. * Os
the

dois
two

primeiros
first

três
three

lugares
places

estão
are

ocupados.
taken

b. * Os
the

primeiros
first

dois
two

segundos
second

pratos
dishes

estão
are

atrasados.
late

c. * Certos
certain

dois
two

certos
certain

carros
cars

avariaram.
broke down

A class of prenominals, “vague quantifiers” or “quantificational adjectives”, has the exact distri-
bution of cardinals (61).

(61) Os
the

vários
various

participantes
participants

passeiam
walk

as
the

folhas
paper sheets

pela
through the

sala.
room

The various participants walk the paper sheets through the room.

They cannot co-occur with cardinals (62).

(62) a. * os
the

vários
various

vinte
twenty

participantes
participants

b. * os
the

vinte
twenty

vários
various

participantes
participants

5NPs like some three cars can be analyzed as involving an item some that is not a determiner but rather a modifier of the cardinal, since
some three roughly means around three. This also applies to Portuguese expressions like alguns três, uns três, with the same meaning.

4.10. CARDINALS, ORDINALS AND MARKERS OF INDEFINITE SPECIFICS 99

Vague quantifiers do occur with ordinals (63) and markers of indefinite specifics (64).

(63) a. os
the

vários
various

primeiros
first

lugares
seats

the various first seats
b. os

the
primeiros
first

vários
various

lugares
seats

the various first seats

(64) a. vários
various

certos
certain

participantes
participants

various certain participants
b. certos

certain
vários
various

participantes
participants

various certain participants

They cannot iterate (65).

(65) a. * os
the

vários
various

vários
various

participantes
participants

b. * os
the

vários
various

vinte
vinte

vários
various

participantes
participants

Vague quantifiers can thus be constrained exactly like cardinals. In the following discussion we
will thus ignore them and only talk about cardinals.

Similarly, the class of ordinals can also be considered to include other elements with the same
syntactic distribution. This is the case of items like último (last) and próximo (next). Consider:

(66) a. * os
the

próximos
next

primeiros
first

capítulos
chapters

b. * os
the

primeiros
first

próximos
next

capítulos
chapters

c. os
the

três
three

próximos
next

capítulos
chapters

the next three chapters
d. os

the
próximos
next

três
three

capítulos
chapters

the next three chapters

We will also have these elements in mind when we discuss ordinals, from now on. It should be
mentioned that superlative forms of adjectives do not pattern with items like último or próximo or
ordinals:6

(67) a. os
the

dois
two

melhores
best

capítulos
chapters

the two best chapters / the best two chapters
b. * os

the
melhores
best

dois
two

capítulos
chapters

6We mention superlatives because there are semantic and etymological similarities between superlative forms of adjectives and these
items. There are also some syntactic similarities, like o primeiro N de todos (the first N of all), o último N de todos (the last N of all), o

melhor N de todos (the best N of all).

100 CHAPTER 4. NP SYNTAX AND SEMANTICS

We now turn to the discussion of implementing these three classes: ordinals, cardinals/vague
quantifiers and markers of indefinite specific NPs.

A type hierarchy of marking alone cannot prevent these items from iterating — since the relative
order between them is free, and they occupy the same slot as far as word order between them and
the remaining NP elements is concerned, the way the features MARK and MARKING are constrained
should be relatively similar for all of them.

Cardinals have the following type as the value of their HEAD feature:

cardinal

MARKER

pre-only-marker-min

SELECT|LOCAL|CAT

HEAD noun
MARKING no-poss-marking

MARK no-poss-marking

Ordinals, and markers of indefinite specifics have similar constraints. These constraints make
them attach closer to the noun than possessives.

As such, nothing prevents these items from iterating.
What is required is another way of recording which elements have already been saturated. This

can be implemented by adding features under marking. Binary features can be used under marking
types as in (Allegranza, 1998a,b). For instance, a feature ORDINAL can be used to denote whether a
cardinal is present in a structure.

Although this distinction is binary, we do not use the type bool, since it is not immediately obvious
whether a feature ORDINAL with the value + represents a structure where an ordinal is present and no
other ordinal can combine with it or one where an ordinal is not present and it is possible for another
ordinal to attach to it. A different set of values, in Figure 4.13, is used instead, in a hierarchy with a
shape similar to that of boolean types.

present

present-or-absent

absent

Figure 4.13: Type hierarchy under present-or-absent (version 1/2). Final version on p. 125.

Getting back to the example of cardinals, a syntactic constituent containing a cardinal will have
the value present for the feature CARDINAL. Cardinals select a constituent with CARDINAL of type
absent and produce a node with CARDINAL of type present. Because the CARDINAL attribute of the
mother node is different from the CARDINAL of the head daughter, the natural place to put it is under
MARKING.

Other features are needed to encode the presence of ordinals and markers of indefinite specific
NPs: ORDINAL and INDEF-SPEC. In functors that are not ordinals, cardinals or markers of indefi-
nite specifics, all of these features will have to be passed from their sister up to the mother node.
This is achieved by unifying the new features under the attribute MARK and under the MARKING of
the selected constituent. These functors may constrain these two features with different subtypes of
marking, so unifying MARK and MARKING is not possible. We can therefore group these three attributes
under another one, MK-VAL, which is appropriate for marking:

4.10. CARDINALS, ORDINALS AND MARKERS OF INDEFINITE SPECIFICS 101

marking
MK-VAL mk-val

mk-val
CARDINAL present-or-absent
ORDINAL present-or-absent
INDEF-SPEC present-or-absent

Unifying MK-VAL thus unifies all these subfeatures. For instance, the head of adjectives now has
the additional constraints:

adjective

MARKER

MARK|MK-VAL 1

SELECT|LOCAL|CAT|MARKING|MK-VAL 1

Minimal types, as presented in Section 3.5.1 can also be used. This strategy has already been
presented, so we explain it here briefly. The idea is to create a most general type with no features
for MK-VAL, say mk-val-min, a subtype of mk-val-min for each feature that has to be used, where that
feature is declared (mkv-cardinal for CARDINAL, mkv-ordinal for ORDINAL and mkv-indef-spec for INDEF-
SPEC), and subtypes covering all combinations of features, resulting in a type hierarchy with 2n types
for n features. A possible hierarchy is:

mkv-cardinal

mk-val-min

mkv-ordinal mkv-indef-spec

mkv-cardinal-ordinal mkv-cardinal-indef-spec mkv-ordinal-indef-spec

mk-val

In marking, MK-VAL is declared to be of the type mk-val-min, instead of mk-val. Although MK-VAL

is inherited by all subtypes of marking, the subfeatures will not be present if unconstrained.

For instance, prepositions constrain the constituent they select to have MARKING of type basic-
marking. When they attach to a VP, the MARKING feature of that VP node will have a subfeature
MK-VAL, but under it there will be no feature CARDINAL, ORDINAL and INDEF-SPEC, as they can be left
unconstrained there (they do not make sense for verb headed constituents).

Cardinals now have the following constraints under their HEAD:

102 CHAPTER 4. NP SYNTAX AND SEMANTICS

cardinal

MARKER

pre-only-marker-min

MARK

no-poss-marking

MK-VAL

CARDINAL present
ORDINAL 1

INDEF-SPEC 2

SELECT|LOCAL|CAT

HEAD noun

MARKING

no-poss-marking

MK-VAL

CARDINAL absent
ORDINAL 1

INDEF-SPEC 2

The HEAD of ordinals is:

ordinal

MARKER

pre-only-marker-min

MARK

no-poss-marking

MK-VAL

CARDINAL 1

ORDINAL present
INDEF-SPEC 2

SELECT|LOCAL|CAT

HEAD noun

MARKING

no-poss-marking

MK-VAL

CARDINAL 1

ORDINAL absent
INDEF-SPEC 2 absent

The constraint on the feature INDEF-SPEC to be absent is to prevent ordinals from preceding certo

and determinado, thus blocking examples like (57d).

The HEAD of markers of indefinite specifics is very similar:

4.10. CARDINALS, ORDINALS AND MARKERS OF INDEFINITE SPECIFICS 103

indef-specific

MARKER

pre-only-marker-min

MARK

no-poss-marking

MK-VAL

CARDINAL 1

ORDINAL 2

INDEF-SPEC present

SELECT|LOCAL|CAT

HEAD noun

MARKING

no-poss-marking

MK-VAL

CARDINAL 1

ORDINAL 2

INDEF-SPEC absent

Nouns come in the lexicon with MARKING of type basic-marking, as before, but additionally all
features under MK-VAL have absent as their value:

SYNSEM|LOCAL|CAT

HEAD noun

MARKING

basic-marking

MK-VAL

CARDINAL absent
ORDINAL absent
INDEF-SPEC absent

4.10.1 Semantics of Markers of Indefinite Specifics

Prenominal items like certo and determinado (certain) as in the examples (26), repeated below, carry no
semantic relations but instead simply restrict the set of available readings:

(68) a. Todas
all

as
the

pessoas
people

leram
have read

um
a

certo
certain

livro.
book

All people have read a certain book.
∃y[book(y)∧∀x[person(x)→ read(x,y)]]

b. Todas
all

as
the

pessoas
people

leram
have read

um
a

livro.
book

All people have read a book.
∀x[person(x) →∃y[book(y)∧ read(x,y)]]

∃y[book(y)∧∀x[person(x)→ read(x,y)]]

The MRS assigned by LXGram to the sentence in (68a) is in Figure 4.14, and the MRS for the
sentence in (68b) is in Figure 4.15.

The two MRSs have exactly the same relations and handle constraints. The only differences lie in
the values of the features SCOPE in some of the handles (of type h) in these MRSs. The handles for
which this feature is not displayed have it completely unconstrained (minimal types for handles are
used to hide unconstrained SCOPE features).

Without these constraints for the SCOPE feature, these two MRSs can be scope resolved in the two
following formulas:

104 CHAPTER 4. NP SYNTAX AND SEMANTICS

mrs
LTOP h1 h
INDEX e2 e

RELS

〈

_todo_q_rel
LBL h3 h
ARG0 x6 x

RSTR h5

[

h
SCOPE narrow

]

BODY h4

[

h
SCOPE narrow

]

,

_pessoa_n_rel
LBL h7 h
ARG0 x6

,

_ler_v_rel
LBL h8

ARG0 e2

ARG1 x6

ARG2 x9 x

,

_um_q_rel

LBL h10

[

h
SCOPE wide

]

ARG0 x9

RSTR h12

[

h
SCOPE non-widest

]

BODY h11

[

h
SCOPE non-widest

]

,

_livro_n_rel
LBL h13 h
ARG0 x9

〉

HCONS

〈

qeq
HARG h1

LARG h8

,

qeq
HARG h5

LARG h7

,

qeq
HARG h12

LARG h13

〉

Figure 4.14: MRS with constrained quantifier scope. The sentence is Todos as pessoas leram um certo livro
(all people have read a certain book).

• _um_q(x9,_livro_n(x9),_todo_q(x6,_pessoa_n(x6),_ler_v(e2,x6,x9)))

• _todo_q(x6,_pessoa_n(x6),_um_q(x9,_livro_n(x9),_ler_v(e2,x6,x9)))

These are in fact the two readings for the sentence in (68b). The constraints on SCOPE are intended
to block the second reading for the example (68a), in Figure 4.14.

The idea is that, in the second reading, the handle tagged with h4 and the handle tagged with h10

in these MRSs correspond to the same node in the syntax tree for the scoped formula:

h3 : _todo_q(x6,h5,h4)

�
�

�
�

�
�

�

H
H

H
H

H
H

H

h7 : _pessoa_n(x6) h10 : _um_q(x9,h12,h11)

�
�

�
�
�

H
H

H
H

H

h13 : _livro_n(x9) h8 : _ler_v(e2,x6,x9)

Since they represent the same node, we can assume that they must be compatible. The approach
is then to make the constraints on these two handles incompatible in the MRS for the example (68a),
but compatible in the MRS for the sentence in (68b).

The type hierarchy for the values that the feature SCOPE can take is in Figure 4.16.
The MRS in Figure 4.14 (for the example in (68a)) has h4 with its feature SCOPE with the value

narrow, and the SCOPE feature of the handle h10 has the value wide. These types are incompatible
according to the hierarchy in Figure 4.16.

This mechanism does not work in practice, because the LKB scope resolution algorithm does not
perform unification operations on the handles that end up denoting the same node in the fully scoped

4.10. CARDINALS, ORDINALS AND MARKERS OF INDEFINITE SPECIFICS 105

mrs
LTOP h1 h
INDEX e2 e

RELS

〈

_todo_q_rel
LBL h3 h
ARG0 x6 x

RSTR h5

[

h
SCOPE narrow

]

BODY h4

[

h
SCOPE narrow

]

,

_pessoa_n_rel
LBL h7 h
ARG0 x6

,

_ler_v_rel
LBL h8

ARG0 e2

ARG1 x6

ARG2 x9 x

,

_um_q_rel
LBL h10 h
ARG0 x9

RSTR h12

[

h
SCOPE non-widest

]

BODY h11

[

h
SCOPE non-widest

]

,

_livro_n_rel
LBL h13 h
ARG0 x9

〉

HCONS

〈

qeq
HARG h1

LARG h8

,

qeq
HARG h5

LARG h7

,

qeq
HARG h12

LARG h13

〉

Figure 4.15: MRS allowing for quantifier scope ambiguity. The sentence is Todos as pessoas leram um livro
(all people have read a book).

non-widest

scope

widest

wide narrow

Figure 4.16: Type hierarchy under scope

formulas. For this reason, these constraints on handles are still experimental in LXGram. It would of
course be possible to resolve MRSs with an external component, that could take this information into
account.

Markers of indefinite specifics contribute no semantics. Instead they simply constrain the features
SCOPE of the associated quantifier relation. In LXGram, the quantifier relation of an NP is accessible in
all noun headed phrases in the feature QUANT-REL under a feature KEYS (for key relations).7. Markers
of indefinite specific NPs simply have the constraint:

[

SYNSEM|LOCAL|CAT|HEAD|MARKER|SELECT|LOCAL|CONT|KEYS|QUANT-REL|LBL|SCOPE wide
]

If a marker of indefinite specifics is not present, this feature will simply have a more general type
(allowing for more scope resolution possibilities, as desired).

The type widest in Figure 4.16 is used to constrain the LBL of the proper_q_rel, which is used with
proper names. It is meant to ensure that proper names receive widest scope. The value wide is given to
the LBL of quantifier relations associated with an NP where a marker of indefinite specifics is present.

7Items that introduce quantifier relations simply unify this relation with the value of this feature. The feature KEYS is unified between
the mother node and the head daughter in all headed constructions.

106 CHAPTER 4. NP SYNTAX AND SEMANTICS

The RSTR and BODY features of all quantifier relations are constrained with the SCOPE value non-widest,
except in proper_q_rel relation, where they are not constrained. Quantifier relations of determiners
and predeterminers that cannot occur with markers of indefinite specifics in the same NP (e.g. todo —
all) have the SCOPE under these two features (RSTR and BODY) further constrained to be narrow. This
set of items contains the predeterminer todo (all), the definite articles and the demonstratives:

(69) a. * (Todos)
all

os
the

determinados
certain

homens
men

leram
have read

um
a

livro.
book

b. * Esses
those

determinados
certain

homens
men

leram
have read

um
a

livro.
book

The scope ordering is thus the following: widest > wide > narrow.
Consider the following example:

(70) Todos
all

os
the

filhos
children

da
of the

Ana
Ana

leram
have read

um
a

certo
certain

livro.
book

All of Ana’s children have read a certain book.

These constraints license only one quantifier scope possibility:

proper_q(x8,named(x,“Ana′′),_um_q(x16,_livro_n(x16),_todo_q(x4,_ f ilho_n_−de− (x4,x8),_ler_v(e2,x4,x16))))

The proper_q_rel relation cannot be embedded under any of the other quantifier relations, because
its LBL has SCOPE of the type widest, but the handle arguments of the other quantifier relations have
the value non-widest or narrow for their SCOPE features, and any of these types is incompatible with the
type widest. The _um_q_rel relation in this example also cannot be under the scope of the _todo_q_rel,
like in the previous example.

4.11 Cardinals and Markers of Indefinite Specifics as Determiners

As was mentioned in Section 4.10, cardinals and items like certo and determinado (certain) that mark
indefinite specific NPs can themselves introduce an NP. Some examples from (58) are repeated below
in (71).

(71) a. dois
two

certos
certain

capítulos
chapters

two certain chapters
b. certos

certain
dois
two

capítulos
chapters

two certain chapters

Ordinals cannot occur in NP initial position, though:

(72) a. um
a

DVD
DVD

com
with

dois
two

primeiros
first

episódios
episodes

dessa
of that

série
series

a DVD with two first episodes of that series
b. * um

a
DVD
DVD

com
with

primeiros
first

dois
two

episódios
episodes

dessa
of that

série
series

4.11. CARDINALS AND MARKERS OF INDEFINITE SPECIFICS AS DETERMINERS 107

When these elements are preceded by a determiner, it is the determiner that introduces quantifier
semantics. Assuming that quantifier semantics is always introduced by a determiner or a bare NP
construction, there are two ways of introducing quantifiers in these NPs: considering them instances
of bare NPs or analyzing the first element as a determiner.

The first possibility is not very attractive for Portuguese, for a number of factors. Preverbal bare
NP subjects have a very constrained distribution in European Portuguese. It is interesting to note that
NPs introduced by a cardinal (73c) do not pattern with bare NPs (73a) in the following examples, but
rather with NPs introduced by determiners (73b).

(73) a. */?? Cartas
letters

chegaram.
have arrived

b. Algumas
some

cartas
letters

chegaram.
arrived

Some letters arrived.
c. Duas

two
cartas
letters

chegaram.
arrived

Two letters arrived.

The example in (73c) sounds as good as the one in (73b), which is introduced by the item alguns,
which can only occur in NP initial position and is thus not in a bare NP.

Second, bare NPs tend to have non-specific readings in Portuguese: they cannot scope over nega-
tion (74), universal quantifiers (75) or intensional verbs (76). These examples are Brazilian Portuguese,
from (Munn and Schmitt, 1998) (we took the liberty of adding the corresponding logical formulas, for
ease of exposition), but the same observations hold for European Portuguese. We also bracketed the
relevant bare NPs in these examples.

(74) a. João
João

não
not

viu
saw

uma
a

mancha
spot

no
on the

chão.
floor

João didn’t see a spot on the floor.
1. ¬∃x[spot_on_the_ f loor(x)∧ saw(João,x)]

2. ∃x[spot_on_the_ f loor(x)∧¬saw(João,x)]

b. João
João

não
not

viu
saw

[manchas
spots

no
on the

chão.
floor

]

João didn’t see spots on the floor.
1. ¬∃x[spot_on_the_ f loor(x)∧ saw(João,x)]

(75) a. Todo mundo
everyone

leu
read

um
a

livro
book

sobre
on

girafas.
giraffes

Everyone read a book on giraffes.
1. ∀x[person(x) →∃y[book_on_gira f f es(y)∧ read(x,y)]]

2. ∃y[book_on_gira f f es(y)∧∀x[person(x) → read(x,y)]]

b. Todo mundo
everyone

leu
read

[livros
books

sobre
on

girafas.
giraffes

]

Everyone read books on giraffes.
1. ∀x[person(x) →∃y[book_on_gira f f es(y)∧ read(x,y)]]

108 CHAPTER 4. NP SYNTAX AND SEMANTICS

(76) a. Pedro
Pedro

quer
wants

encontrar
to meet

um
a

policial.
policeman

Pedro wants to meet a policeman.
1. ∃x[policeman(x)∧want(Pedro,meet(Pedro,x))]

2. want(Pedro,∃x[policeman(x)∧meet(Pedro,x)])

b. Pedro
Pedro

quer
wants

encontrar
to meet

[policiais.
policemen

]

Pedro wants to meet policemen.
1. want(Pedro,∃x[policeman(x)∧meet(Pedro,x)])

NPs introduced by cardinals do not pattern with bare NPs in this respect and allow both readings.
An example with negation is in (77), in which the semantics of the cardinal duas/two is represented by
λP.λQ.∃x1∃x2[x1 6= x2∧P(x1)∧P(x2)∧Q(x1)∧Q(x2)]. Ambiguity can be found in the other two contexts
as well.

(77) João
João

não
not

viu
saw

duas
two

manchas
spots

no
on the

chão.
floor

João didn’t see two spots on the floor.
1. ¬∃x1∃x2[x1 6= x2 ∧ spot_on_the_ f loor(x1)∧ spot_on_the_ f loor(x2)

∧saw(João,x1)∧ saw(João,x2)]

2. ∃x1∃x2[x1 6= x2 ∧ spot_on_the_ f loor(x1)∧ spot_on_the_ f loor(x2)

∧¬saw(João,x1)∧¬saw(João,x2)]

Furthermore, NPs introduced by markers of indefinite specifics should obviously not be analyzed
as bare NPs if the latter are constrained to take non-specific readings:

(78) a. O
the

João
João

não
not

viu
saw

certa
certain

mancha
spot

no
on the

chão.
floor

João didn’t see a certain spot on the floor.
1. ∃x[spot_on_the_ f loor(x)∧¬saw(João,x)]

b. Todas
all

as
the

pessoas
people

leram
read

certo
certain

livro
book

sobre
on

girafas.
giraffes

Everyone read a certain book on giraffes.
1. ∃y[book_on_gira f f es(y)∧∀x[person(x) → read(x,y)]]

c. Pedro
Pedro

quer
wants

encontrar
to meet

certo
certain

polícia.
policeman

Pedro wants to meet a certain policeman.
1. ∃x[policeman(x)∧want(Pedro,meet(Pedro,x))]

Bare NPs do not co-occur with the cada (each) of (79), but NPs introduced by cardinals do (exam-
ples from (Müller, 2002)):

(79) a. Os
the

países
countries

da
of the

UE
EU

mandaram
sent

um/dois/vários
a/two/various

delegado(s)
delegate(s)

cada.
each

The EU countries sent a/two/various delegate(s) each.
b. * Os

the
países
countries

da
of the

UE
EU

mandaram
sent

delegados
delegates

cada.
each

4.11. CARDINALS AND MARKERS OF INDEFINITE SPECIFICS AS DETERMINERS 109

We conclude that cardinals and markers of indefinite specifics at NP initial position are best treated
as determiners. They introduce indefinite NPs and cannot co-occur with prenominal possessives.
The constraints on the marking features must therefore be different from the ones on elements of
Position IV. Therefore, the constraints on their HEAD must differ. NP initial cardinals also carry
quantifier semantics, which the elements of Position IV arguably do not. We will be calling them
cardinal determiners and indefinite specific determiners from now on.

The HEAD of an NP initial cardinal looks like this:

cardinal-det

MARKER

pre-only-marker-min

MARK

saturated

MK-VAL

CARDINAL present
ORDINAL 1

INDEF-SPEC 2

SELECT|LOCAL|CAT

HEAD noun

MARKING

no-poss-marking

MK-VAL

CARDINAL absent
ORDINAL 1

INDEF-SPEC 2

The interesting point about this definition is that cardinal determiners actually saturate two slots:
the determiner position (Position II) and the prenominal possessive position (Position III). This would
not be possible to achieve if saturation were encoded via valence features, which must be discharged
one at a time, unless a dedicated syntactic rule was used. The constraints using the different values of
marking prevent cardinal determiners from iterating, and the constraint on MK-VAL|CARDINAL of the
selected synsem prevents cardinal determiners from combining with the cardinal elements of Position
IV. The remaining features under MK-VAL do not need to be constrained in the way just shown, since
the values of marking already guarantee that nothing can combine to the left of a cardinal determiner,
but we do so in order to ensure that every instance of them respects their semantics.

The constraints for indefinite specific determiners are similar, with the obvious differences regard-
ing the features CARDINAL and INDEF-SPEC.

There are no determiner versions of ordinals, as they cannot initiate an NP.
There are two questions to address: the relation between these determiners and the items of Posi-

tion IV, and preventing bare NPs from being formed from NPs starting with an element in Position
IV.

There are two possibilities for the first issue: to produce the determiner version from the post-
determiner one via a unary rule, or to have multiple lexical entries. In LXGram indefinite specifics
receive multiple lexical entries, but cardinals do not. This is for reasons related to the composition of
semantics and is explained in Section 4.11.1.

We assume that bare NPs are produced by a unary syntactic rule that adds quantifier semantics,
imposes a value of marking on the mother node subsumed by saturated-marking and requires the
daughter to be a noun headed sign with a MARKING subsumed by no-det-marking. In order to prevent
bare NPs to be built from constituents that include a postdeterminer cardinal, ordinal or marker of

110 CHAPTER 4. NP SYNTAX AND SEMANTICS

mrs

LTOP h1 h
INDEX e2 e

RELS

〈

_o_q_rel
LBL h3 h
ARG0 x4 x
RSTR h6 h
BODY h5 h

,

cardinal_rel
LBL h7 h
ARG0 e9 e
ARG1 h8 h

ARG2 j10 j

,

greater-or-equal_rel
LBL h7

ARG0 j10

ARG1 j11 j

,

int-equals_rel
LBL h7

ARG0 j11

CARG 2

,

_carro_n_rel
LBL h8

ARG0 x4

,

_avariar_v_rel
LBL h12

ARG0 e2

ARG1 x4

〉

HCONS

〈

qeq
HARG h1

LARG h12

,

qeq
HARG h6

LARG h7

〉

Figure 4.17: MRS of a sentence with a postdeterminer cardinal. The sentence is os dois carros avariaram (the
two cars broke down).

indefinite specifics, the daughter is also constrained to have the features ORDINAL, CARDINAL and
INDEF-SPEC under MARKING|MK-VAL of type absent.

4.11.1 Cardinal Determiners and the Semantics of Cardinals

In LXGram we chose to relate cardinal determiners and cardinal postdeterminers via unary syntactic
rules. In particular, the determiner versions are produced from the postdeterminer versions. This is
tied to issues of composition of semantics.

For the postdeterminer cardinals, an example of the MRSs produced is in Figure 4.17. The cardinal
corresponds to three relations in this MRS: the cardinal_rel relation, the greater-or-equal_rel relation, and
the int-equals_rel relation.

In the literature, there are several approaches to the semantics of cardinals: they have been given
the semantic types 〈e, t〉 (a set of entities),8 〈〈e, t〉,〈e, t〉〉 (a function from sets to sets) or 〈〈e, t〉,〈〈e, t〉, t〉〉
(a determiner). We did not choose to give cardinals quantifier semantics, because they can occur
after determiners, as in expressions like all three. When they do appear in NP initial position, quan-
tifier semantics must be added, though. We opted for the 〈〈e, t〉,〈e, t〉〉 treatment (i.e. consider them
modifiers), and do not commit to saying that cardinals are intersective modifiers.9 Therefore the
cardinal_rel scopes over the relation introduced by the head noun in MRSs. This is compatible
with intersective semantics but does not enforce it. Our representation for cardinals is similar to
λ i∈I .λP∈D〈e,t〉

.λx∈De .cardinal(e,P(x), i), where the integer argument i is supplied in each lexical entry

8Or rather its characteristic function, a function from entities to truth values yielding true for all members of that set and for them only,
i.e. a function of the form λx∈De .P(x).

9We do not commit to saying that this function is λP∈D〈e,t〉
.λx∈De .P(x)∧Q(x), for some lexically given set Q. For example, if the

denotation of car is λx∈De .car′(x), the denotation of two cars would be (λP∈D〈e,t〉
.λx∈De .P(x)∧2(x))(λx∈De car′(x))= λx∈De .car′(x)∧2(x)

if intersective semantics is given to cardinals. This only makes sense if we consider the existence of plural (non-atomic) entities, whose
atoms can be counted, in which case the set denoted by 2 in the above formula is the set of all plural entities with two atoms. There are
many views on the semantics of cardinals, and we remain neutral with respect to the status of plural entities. In (Ionin and Matushansky,
2006) there are references to the main pieces of work in this field.

4.11. CARDINALS AND MARKERS OF INDEFINITE SPECIFICS AS DETERMINERS 111

for cardinals. However, we do not define the meaning of the cardinal relation. It can be intersective if
we posit that λ i.λP.λx.cardinal(e,P(x), i) = λ i.λP.λx.P(x)∧ count(P, i), where λ i.λx.count(x, i) is true if
x is a plural entity with i atoms. Its meaning can however be defined differently, not necessarily in an
intersective way.

Note that a definition that constrains the cardinality of the set denoted by the noun does not work.
For instance a sentence like three cars broke down does not mean that the cardinality of the set of cars
is three, but rather that the cardinality of the intersection of the set of cars and the set of things that
broke down is three. Using plural entities, this sentence would be assigned a representation that says
that there is a plural entity consisting of three cars that also belongs to the set of things that broke
down, i.e. it is simple existential quantification, which is the semantics we will assume for cardinals
occupying a determiner position (see below).

The other relations describe the integer argument of the cardinal_rel relation. It is widely assumed
that an expression like two children means at least two children and not exactly two children. In the
following example, the answer would be contradictory if two children meant exactly two children:

(80) — Do you have two children?
— Yes. In fact I have three.

The entire relevant piece of semantics is cardinal(e9,_carro_n(x4), j10)∧greater-or-equal(j10, j11)∧

int-equals(j11,2). Variables of the form jn, where n > 0 are supposed to be of type integer.10 We can
view these integer variables as existentially quantified by convention, so we do not explicitly include
these quantifiers in the MRSs.

It would be more simple to produce cardinal(e9,_carro_n(x4),2), assuming that the relation greater
or equal is part of the meaning of cardinal_rel.

The motivation for introducing the greater-or-equal_rel relation is that in certain contexts we do
not want it to appear in the MRSs. This is the case of expressions like exactly two or at most two. For an
expression like no máximo dois/at most two, we can think of the semantics λP.λx.cardinal(e,P(x4), j1)∧

less-or-equal(j1, j2)∧ int-equals_rel(j2,2). In order to factor out the similarity with the representation
for an unmodified dois/two, we explicitly introduce greater-or-equal_rel relation when a cardinal is
not modified.11

The use of the int-equals_rel relation is a matter of convenience. It is not necessary, because, instead
of the piece of semantics cardinal(e9,_carro_n(x4), j10)∧ greater-or-equal(j10, j11)∧ int-equals(j11,2),
we could simply use cardinal(e9,_carro_n(x4), j10)∧greater-or-equal(j10,2).

It is more convenient for the generation algorithm in the LKB to associate at least one relation
with every lexical item. If we did not include this relation in the lexical entry for cardinals, their only
semantic content would be the integer constant that is an argument of relations like greater-or-equal_rel
or less-or-equal_rel.

The implementation in LXGram associates to lexical items for cardinals only the int-equals_rel re-
lations. All other relations are introduced in syntax, via rules that add semantics.

The first set of rules allows these expressions to combine with cardinal modifiers like exactly, at

most, etc. Only one modifier is allowed, and if no modifier is present, a unary syntactic rule is used
to add the greater-or-equal_rel. A cardinal modifier like at most introduces a less-or-equal_rel, a modifier
like exactly introduces no relation.

10They can be created by manipulating the LKB configuration files, namely by redefining function determine-variable-type in the file
mrsglobals.lisp.

11If we assumed that the greater-or-equal_rel relation is part of the meaning of cardinal_rel so that we would not have to include it
in MRSs when a cardinal is not modified, expressions like at most two would not receive the correct semantics, or we could not use the
cardinal_rel in these cases.

112 CHAPTER 4. NP SYNTAX AND SEMANTICS

Immediately up the tree, a unary rule is used to add the cardinal_rel relation and producing a node
with a HEAD of type cardinal. After this step the piece of semantics for dois (two) and for pelo menos dois

(at least two) is like λP.λx.cardinal(e,P(x), j1)∧greater-or-equal(j1, j2)∧ int-equals(j2,2). The semantics
for no máximo dois (at most two) is like λP.λx.cardinal(e,P(x), j1)∧ less-or-equal(j1, j2)∧ int-equals(j2,2).
The semantics for exactamente dois (exactly two) is like λP.λx.cardinal(e,P(x), j1)∧ int-equals(j1,2).

An optional rule can apply afterwards, changing the postdeterminer cardinal into a determiner
(cardinal-det above) and adding quantifier semantics. So cardinal determiners are produced from
cardinal postdeterminers via a syntactic rule.

We will not show the details of all these rules since they are relatively trivial. To control order of
rule application LXGram uses different values of HEAD for these elements: many of these rules are
non-headed. Only the two highest rules create nodes with values of head that inherit from functor
and that can attach to nominal projections. These subtypes of head and their definitions (cardinal and
cardinal-det) have already been presented.

This analysis is completely monotonic: we only add relations to an MRS, never remove or alter
relations introduced elsewhere. This is a requirement of the LKB: composition of semantics has to
be monotonic so that efficient algorithms can be used for generation. Also, every lexical entry for
cardinals and every rule used in this process contributes at least one relation to the MRS.

Although a large number of dedicated rules is involved, they are used to build the semantics
little by little and factor out the commonalities between the various pieces of MRS that are related to
cardinals.

We assume that complex cardinal expressions like vinte e um/twenty one are recognized by a Named
Entity Recognizer (NER) in a preprocessing step, and for the purposes of the grammar behave just like
atomic cardinals like vinte/twenty. There is one NER developed in the University of Lisbon (Ferreira
et al., 2007), that can be integrated with LXGram. Since NERs are not necessarily bidirectional, we can
parse these expressions but we cannot generate them, though.

4.12 PPs and AdvPs

PPs and some AdvPs can modify a noun on their left. Some examples are given in (81).

(81) a. pessoas
people

[PP com
with

mobilidade
mobility

reduzida
reduced

]

people with reduced mobility
b. [NP Aquele

that
carro
car

aliAdvP
there

] [VP estava
was

estacionado
parked

aqui
here

ontem.
yesterday

]

That car over there was parked here yesterday.

The adverb ali (there) in (81b) cannot be analyzed as modifying the VP to its right, as a situation
cannot happen simultaneously “here” and “there”.

PPs and AdvPs cannot precede the noun, as shown in (82).

(82) a. * [PP com
with

mobilidade
mobility

reduzida
reduced

] pessoas
people

b. * Aquele
that

aliAdvP
there

carro
car

estava
was

estacionado
parked

aqui
here

ontem.
yesterday

Inside the NP, they have the syntactic distribution of postnominal adjectives (Position VIII in the table
in Appendix A). In fact, because PPs and APs can be interspersed, ambiguity can arise concerning
adjective attachment — consider (83).

4.12. PPS AND ADVPS 113

(83) carros
cars

sem
without

assentos
seats

vermelhos
red

red cars with no seats/cars without red seats

This example has two interpretations depending on the attachment site of the adjective: [[car-
ros [PP sem assentos]] vermelhosAP] (red cars with no seats) and [carros [PP sem assentos vermelhos]]
(cars without red seats). This fact leads one to posit constraints on the head types of prepositions and
adverbs similar to the ones on postnominal adjectives, as far as the feature POSTHEAD is concerned.

The constraints on the head of prepositions and adverbs that can modify nouns (as well as verbs)
thus look like:

preposition-or-adnominal-adverb

MARKER

MARK

basic-marking
MK-VAL 1

SELECT|LOCAL|CAT

HEAD noun-or-verb

MARKING

basic-marking
MK-VAL 1

PREHEAD|SELECT|LOCAL|CAT|HEAD verb

With the setup presented so far, the grammar overgenerates. Consider the following NP:

(84) Os
the

dois
two

carros
cars

da
of the

Ana
Ana

Ana’s two cars

There are two parses for this NP (with abridged feature paths, and MK standing for MARKING):

NP

�
�

�
�

�
�

H
H

H
H

H
H

D

os

N

MK

no-poss-marking

MK-VAL

CARDINAL present
ORDINAL absent
INDEF-SPEC absent

�
�

�
�

�
�

�
�

�

H
H

H
H

H
H

H
H

H

CARD

dois

N

MK

basic-marking
MK-VAL 1

�
�

�
�

�
�

H
H

H
H

H
H

N

MK

basic-marking

MK-VAL 1

CARDINAL absent
ORDINAL absent
INDEF-SPEC absent

carros

PP

da Ana

NP

�
�

�
�

�
�

�
�

�
�

H
H

H
H

H
H

H
H

H
H

D

os

N

MK

basic-marking
MK-VAL 1

�
�

�
�

�
�

�
�

�

H
H

H
H

H
H

H
H

H

N

MK

no-poss-marking u basic-marking =

basic-marking

MK-VAL 1

CARDINAL present
ORDINAL absent
INDEF-SPEC absent

�
�

�
�

�
�

H
H

H
H

H
H

CARD

dois

N

MK

no-poss-marking u basic-marking =

basic-marking

MK-VAL

CARDINAL absent
ORDINAL absent
INDEF-SPEC absent

carros

PP

da Ana

114 CHAPTER 4. NP SYNTAX AND SEMANTICS

The parse tree on the right is allowed by the system of constraints presented so far, because the
types basic-marking and no-poss-marking are compatible.

The parse tree on the left is preferred, because the syntactic scope among the various elements cor-
responds to their semantic scope: we want to restrict the cardinality of the set that is the intersection
of the set of cars with the set of objects owned by Ana.

A way to block the parse on the right is to constrain prepositions to select for constituents with
the value absent for the feature CARDINAL. The same problem arises with ordinals and markers of
indefinite specific NPs, and the features ORDINAL and INDEF-SPEC should be similarly constrained.
A preliminary solution to this problem involves refining the head type for prepositions and adverbs
that can attach to nominal projections:

preposition-or-adnominal-adverb

MARKER

MARK

basic-marking
MK-VAL 1

SELECT|LOCAL|CAT

HEAD noun-or-verb

MARKING

basic-marking

MK-VAL 1

CARDINAL absent
ORDINAL absent
INDEF-SPEC absent

PREHEAD|SELECT|LOCAL|CAT|HEAD verb

However, if we state these constraints directly in the head type for prepositions and adverbs that
can attach to nominal projections, these features under MK-VAL will be present in the feature structures
also when they attach to verbal projections. Consider the VP in (85) and its syntactic analysis below:

(85) Saíram
they left

com
with

a
the

Ana.
Ana

They left with Ana.
VP

MARKING

basic-marking

MK-VAL 1

CARDINAL absent
ORDINAL absent
INDEF-SPEC absent

�
�

�
�

�
�

�

H
H

H
H

H
H

H

VP

MARKING

basic-marking

MK-VAL 1

CARDINAL absent
ORDINAL absent
INDEF-SPEC absent

Saíram

PP

com a Ana

We can assume that verbs come in the lexicon also with MARKING of the type basic-marking, but
MK-VAL of the type mk-val-min (see Section 4.10), so that the features CARDINAL, ORDINAL and INDEF-
SPEC are not present. However, when a PP attaches to a verb, the constraints under the SELECT|LOCAL

4.12. PPS AND ADVPS 115

|CAT|MARKING feature of the PP unify with the constraints under the SYNSEM|LOCAL|CAT|MARKING of
the verb and these features are present:

basic-marking
MK-VAL mk-val-min

u

basic-marking

MK-VAL

mk-val
CARDINAL absent
ORDINAL absent
INDEF-SPEC absent

=

basic-marking

MK-VAL

mk-val
CARDINAL absent
ORDINAL absent
INDEF-SPEC absent

This situation has no consequence for correctness. However, the presence of these features CARDI-
NAL, ORDINAL and INDEF-SPEC in the feature structures for verb headed constituents are uninforma-
tive and redundant, since verbal projections cannot combine with any of these elements.

We can elaborate the type hierarchy under marking with the purpose of eliminating these features
in verb headed elements, but still ensuring that they are present in noun headed items (as they are
necessary to constrain the attachment possibilities of cardinals and the other elements in Position IV).
A revised version of the hierarchy under marking is in Figure 4.18.

saturated

marking

non-saturated

no-det-marking non-saturated-det-marking

poss-marking no-poss-marking

prenom-adj-or-n-marking

prenom-adj-marking

basic-marking

n-marking

Figure 4.18: Type hierarchy under marking (version 5/6). Previous version on p. 91. Final version on p. 118.

In this hierarchy, the former type prenom-adj-or-basic-marking has been renamed to prenom-adj-or-
n-marking. Syntactic constituents with a MARKING value subsumed by prenom-adj-or-n-marking can
never contain a cardinal, an ordinal or a marker of indefinite specific NPs, since we are assuming that
the elements in Position IV are more peripheral than any of the elements in Position V, Position VI,
Position VII and Position VIII. Therefore, the type prenom-adj-or-n-marking can be constrained in the
following way:

prenom-adj-or-n-marking

MK-VAL

CARDINAL absent
ORDINAL absent
INDEF-SPEC absent

116 CHAPTER 4. NP SYNTAX AND SEMANTICS

These constraints are inherited by the new type n-marking. Nouns now come in the lexicon with
the value n-marking for their feature MARKING.

We can keep the original definition of preposition-or-adnominal-adverb:

preposition-or-adnominal-adverb

MARKER

MARK

basic-marking
MK-VAL 1

SELECT|LOCAL|CAT

HEAD noun-or-verb

MARKING

basic-marking
MK-VAL 1

PREHEAD|SELECT|LOCAL|CAT|HEAD verb

The analysis for the NP in (84) is now:

NP

�
�

�
�

�
�

�

H
H

H
H

H
H

H

D

os

N

MARKING

no-poss-marking

MK-VAL

CARDINAL present
ORDINAL absent
INDEF-SPEC absent

�
�

�
�

�
�

�
�

�
�

�

H
H

H
H

H
H

H
H

H
H

H

CARD

dois

N

MARKING

basic-marking u no-poss-marking = n-marking
MK-VAL 1

�
�

�
�

�
�

��

H
H

H
H

H
H

HH

N

MARKING

n-marking u basic-marking = n-marking

MK-VAL 1

CARDINAL absent
ORDINAL absent
INDEF-SPEC absent

carros

PP

da Ana

The alternative analysis is blocked, as desired:

4.12. PPS AND ADVPS 117

NP

�
�

�
�

�
�

�
�

�
�

�
��

H
H

H
H

H
H

H
H

H
H

H
HH

D

os

N

�
�

�
�

�
�

�
�

��

H
H

H
H

H
H

H
H

HH

N

MARKING

no-poss-marking u basic-marking = n-marking

MK-VAL

CARDINAL present u absent = ⊥

ORDINAL absent
INDEF-SPEC absent

�
�

�
�

�
��

H
H

H
H

H
HH

CARD

dois

N

MARKING

no-poss-marking u n-marking =

n-marking

MK-VAL

CARDINAL absent
ORDINAL absent
INDEF-SPEC absent

carros

PP

da Ana

The sister node of the PP is constrained to be of the type basic-marking by the PP and to be of the
type no-poss-marking by the cardinal. These two types unify to n-marking, which is constrained to
bear the value absent under its MK-VAL|CARDINAL feature. However, the cardinal also constrains this
feature to take the value present. Therefore, a unification failure is derived.

The types subsumed by no-det-marking are not used to constrain the MARKING of verbal projections,
because the items where they are employed only attach to nouns. This means that when a PP attaches
to a verbal constituent, the MARKING value of that constituent remains basic-marking. The result is
never n-marking. This way, the features CARDINAL, ORDINAL and INDEF-SPEC are not present in verb
headed elements. Consider the current analysis for the VP presented above in (85):

VP

MARKING

basic-marking
MK-VAL 1 mk-val-min

�
�

�
�

�

H
H

H
H

H

VP

MARKING

basic-marking
MK-VAL 1

Saíram

PP

com a Ana

The remaining NP elements that have constraints on MARKING employing the type basic-marking
can remain unchanged, since this value will end up being unified with a type subsumed by no-det-
marking in every NP, producing the desired value n-marking.

118 CHAPTER 4. NP SYNTAX AND SEMANTICS

The general type basic-marking helps in hiding the implementation of NP structure. The informa-
tion about the exact position within the NP where PPs and AdvPs attach — namely the constraints
on the absence of the items in Position IV — is encapsulated in a more specific type, n-marking. This
more specific type is kept separate from the definitions of prepositions and adverbs.

4.13 Relative Clauses

We assume that relative clauses are not headed by a verb, and use a dedicated head type for them
(relative-comp), i.e. head-filler constructions for relative clauses are assumed to be non-headed struc-
tures. This is compatible with the LinGO Grammar Matrix. We abstain from developing on the
analysis of relative clauses here, as it would clearly lead us to far afield.

We add a new type to the hierarchy under marking, rel-marking, in order to model relative clause
attachment. The resulting hierarchy is in Figure 4.19. This is the final version of the type hierarchy
under marking.

saturated

marking

non-saturated

no-det-marking non-saturated-det-marking

poss-marking no-poss-marking

rel-marking prenom-adj-or-n-marking

prenom-adj-marking n-marking

basic-marking

Figure 4.19: Type hierarchy under marking (final version — 6/6). Previous version on p. 115.

Restrictive relative clauses should be allowed to iterate, but they are more peripheral than APs
and PPs inside an NP, and they always follow the noun:

relative-comp

MARKER

post-only-marker-min

SELECT|LOCAL|CAT

HEAD noun

MARKING

no-poss-marking
MK-VAL 1

MARK

rel-marking
MK-VAL 1

4.13. RELATIVE CLAUSES 119

The type hierarchy under marking and the constraints presented so far mean that restrictive relative
clauses outscope prenominal adjectives. Semantically, this is borne out by the data. Consider the NP
in (86) below. It describes an entity as being in fact Chinese. That is, the piece of semantics for that NP
will be equivalent to λP.|((De −D)∩C)∩P| > 0 (where De is the model’s domain, D the set of doctors
and C the set of Chinese entities, giving false the semantics λQ.De −Q), with no mismatch between
syntactic and semantic scope. It will not be λP.|(De − (D∩C))∩P| > 0, the semantics for the example
in (34) (um falso médico chinês — a false Chinese doctor).

(86) um
a

falso
false

médico
doctor

que
who

é
is

chinês
Chinese

a false doctor that is Chinese

Semantically, restrictive relative clauses are under the scope of cardinals. Consider the sentence in
(87). If M is the set of movies, BM is the set of bad movies and S is the set of entities that “I saw there”,
the meaning of (87) is M∩S ⊆ BM∧|M∩S|= 3, not M∩S ⊆ BM∧|M|= 3. In particular, any model with
M = {m1,m2,m3,m4}, and BM = S = {m1,m2,m3} makes the first interpretation true and the second one
false, and (87) is true in such models.

(87) Todos
all

os
the

exactamente
exactly

três
three

filmes
movies

que
that

lá
there

vi
I saw

eram
were

maus.
bad

All exactly three movies I saw there were bad.

Continuing to espouse the assumption that, if there is no reason to assume the contrary, syntactic
scope matches semantic scope, we therefore want relative clauses to attach lower than cardinals. Sim-
ilar data can be envisaged for ordinals, but we will not present them for the sake of brevity. Semantic
considerations cannot help us determine the relative scope between relative clauses and markers of
indefinite specifics, because the latter contribute no relations to the resulting semantics. Since cardi-
nals, ordinals and markers of indefinite specifics all occupy the same NP slot, we assume that relative
clauses attach lower than all these elements. To force this attachment, we can simply add the follow-
ing constraints to the type rel-marking:

rel-marking

MK-VAL

CARDINAL absent
ORDINAL absent
INDEF-SPEC absent

Recall that the feature MK-VAL is unified between MARKER|MARK and MARKER|SELECT|LOCAL|CAT

|MARKING under the HEAD attribute of relative clauses, so the constraints just presented on rel-marking
effectively make relative clauses select for constituents that lack all of these elements.

It is worth mentioning that there are data that this analysis does not contemplate:

(88) a
the

sugestãoN
suggestion

[RelCl que
that

foi
was

mencionada
mentioned

] [COMP de que
that

seria
it would be

impossível
impossible

proceder
to act

de outro modo
in a different way

]

the suggestion that was mentioned that it would be impossible to act in a different way

In (88) there is a relative clause, bracketed with RelCl, intervening between the head noun and its
sentential complement, bracketed with COMP, for complement. However, according to our system

120 CHAPTER 4. NP SYNTAX AND SEMANTICS

of constraints, relative clauses must attach to projections with already saturated complements. This is
because Head-Complement constructions constrain the head daughter to have MARKING of type basic-
marking, as presented in Section 4.8. This constraint was necessary in order to force PP complements
to precede relative clauses, as explained in that section.

We believe that this sort of situation only arises in specific cases (sentential complements) and that
they should receive a special treatment, which we do not develop here.

Note that it is not possible to simply create a common subtype of rel-marking and basic-marking in
order to overcome this limitation, because this would allow prenominal adjectives to attach higher
than relative clauses, which we want to block (prenominal adjectives select for sister nodes with
MARKING of type prenom-adj-or-basic-marking; the new type would provide a unifier for rel-marking
and prenom-adj-or-basic-marking).

4.14 Postnominal Demonstratives and Possessives

In Position VIII we can find other elements besides adverbial PPs, AdvPs and APs and complements,
which have been covered. These other elements are postnominal demonstratives, possessives and
universal quantifiers:

(89) a. A
the

bicicleta
bicycle

essa
that

está
is

estragada.
broken

That bicycle is broken.
b. Chegaram

arrived
várias
several

cartas
letters

tuas.
yours

There arrived several letters of yours.
c. Desapareceram

disappeared
as
the

cartas
letters

todas.
all

All the letters disappeared.

We will not address postnominal universal quantifiers. They motivate a more complicated com-
position of semantics, because they introduce a quantifier relation with scope over the rest of the
semantic material of the NP they are in and yet occur in a position (Position VIII) that does not have
syntactic scope over that material. Consider the following example, bracketed according to the syn-
tactic structure that is assumed:

(90) Desapareceram
disappeared

[as
the

[[cartas
letters

todas
all

] da
of the

Ana.
Ana

]]

All of Ana’s letters disappeared.

We leave this issue to future work.

4.14.1 Postnominal Demonstratives

Postnominal demonstratives are possible in some dialects of Portuguese. They are confined to NPs
introduced by a definite article. They do not co-occur with prenominal demonstratives and do not
iterate:

(91) a. A
the

bicicleta
bicycle

essa
that

está
is

estragada.
broken

That bicycle is broken.

4.14. POSTNOMINAL DEMONSTRATIVES AND POSSESSIVES 121

b. * Uma
a

bicicleta
bicycle

essa
that

está
is

estragada.
broken

c. * Essa
that

bicicleta
bicycle

essa
that

está
is

estragada.
broken

d. * Esta
this

bicicleta
bicycle

essa
that

está
is

estragada.
broken

e. * A
the

bicicleta
bicycle

essa
that

essa
that

está
is

estragada.
broken

The most simple way of blocking co-occurrence of prenominal and postnominal demonstratives
and also preventing postnominal demonstratives from iterating is with an extra feature under MK-VAL

for demonstratives:

mk-val
CARDINAL present-or-absent
ORDINAL present-or-absent
INDEF-SPEC present-or-absent
DEMONSTRATIVE present-or-absent

This feature is used as it can be expected from the use of the other features of mk-val as pre-
sented before: prenominal and postnominal demonstratives select for sisters with MARKING|MK-VAL

|DEMONSTRATIVE of type absent and have MARK|MK-VAL|DEMONSTRATIVE with the value present, the
remaining functors unify the DEMONSTRATIVE attributes under the paths SELECT|LOCAL|CAT|MARK-
ING|MK-VAL and MARK|MK-VAL. In order to block the co-occurrence of indefinite determiners with
postnominal demonstratives, indefinite determiners also select for sisters with an absent DEMONSTRA-
TIVE.

Prenominal demonstratives and postnominal demonstratives must come in the lexicon in different
entries, or related by lexical rules, because the prenominal ones are determiners and carry quantifier
semantics. The constraints on MARKING and MARK are also different between these two sets of items.
Prenominal demonstratives have a HEAD of type determiner, while postnominal ones must have mark-
ing constraints almost identical to the other elements in the same slot (postnominal adjectives, etc.).
The word order between functor and head is also different. The head of postnominal demonstratives
looks like:

postnominal-demonstrative

MARKER

post-only-marker-min

MARK

basic-marking

MK-VAL

CARDINAL 1

ORDINAL 2

INDEF-SPEC 3

DEMONSTRATIVE present

SELECT|LOCAL|CAT

HEAD noun

MARKING

basic-marking

MK-VAL

CARDINAL 1

ORDINAL 2

INDEF-SPEC 3

DEMONSTRATIVE absent

122 CHAPTER 4. NP SYNTAX AND SEMANTICS

To make the composition of semantics easier with demonstratives, we view determiner demon-
stratives as carrying two semantic relations: a quantifier relation and an intersective relation in the
restrictor of the quantifier. When a demonstrative is used deictically, the second relation can be se-
mantically considered to be roughly similar to the relation of adverbs like here or there. In this case
a noun phrase like that car is considered semantically close to a noun phrase like the car there, and
this car to the car here. There is some empirical support to this analysis, as the demonstrative and the
adverb must agree with respect to deixis:

(92) a. Esta
this

bicicleta
bicycle

aqui
here

está
is

estragada.
broken

This bicycle here is broken. (the bicycle near me/us)
b. Essa

that
bicicleta
bicycle

aí
there

está
is

estragada.
broken

That bicycle there is broken. (the bicycle near you)
c. Aquela

that
bicicleta
bicycle

ali
there

está
is

estragada.
broken

That bicycle there is broken. (the bicycle away from me and you)
d. * Esta bicicleta aí está estragada.
e. * Esta bicicleta ali está estragada.
f. * Essa bicicleta aqui está estragada.
g. * Essa bicicleta ali está estragada.
h. * Aquela bicicleta aqui está estragada.
i. * Aquela bicicleta aí está estragada.

The names of these predicates in the restrictor of the quantifier are the lemma of the demonstrative
— we do not commit to saying that they are identical to adverbial relations. They are obviously not
so when demonstratives are employed anaphorically, in which case these predicates are assumed to
take a different meaning. We cannot detect automatically with the grammar whether a demonstra-
tive is being used anaphorically or deictically, so the relations visible in the MRSs are meant to be
underspecifications.

Postnominal demonstratives introduce a single, plain intersective, relation in the MRS, and the
quantifier relation comes from the definite article. Prenominal demonstratives introduce two rela-
tions in the MRS representation, a similar intersective one and a quantifier relation. We give them
semantics similar to that of a postnominal demonstrative co-occurring with a definite article. That
is, the quantifier relation of prenominal demonstratives is the same as that of definite articles, thus
treating the following examples as paraphrases of one another:

(93) a. o
the

carro
car

esse
that

that car
b. esse

that
carro
car

that car

MRSs for these two cases are shown in Figure 4.20. The LBL of the _esse_a_rel relation is the LTOP

of the demonstrative determiner’s sister: demonstrative determiners unify this LBL with the path
SELECT|LOCAL|CONT|HOOK|LTOP under their HEAD.

4.14. POSTNOMINAL DEMONSTRATIVES AND POSSESSIVES 123

mrs

LTOP h1 h
INDEX e2 e

RELS

〈

_o_q_rel
LBL h3 h
ARG0 x4 x
RSTR h6 h
BODY h5 h

,

_esse_a_rel
LBL h7 h
ARG0 e8 e
ARG1 x4

,

_carro_n_rel
LBL h7

ARG0 x4

,

_avariar_v_rel
LBL h9

ARG0 e2

ARG1 x4

〉

HCONS

〈

qeq
HARG h1

LARG h9

,

qeq
HARG h6

LARG h7

〉

Figure 4.20: MRS of a sentence with a demonstrative. The corresponding sentences are esse carro avariou and
o carro esse avariou (that car broke down).

The attribution of two relations to prenominal demonstratives is also useful in the context of a
predeterminer, as in the following example:

(94) [NP Todos
all

esses
those

carros
cars

] avariaram.
broke down

All those cars broke down.

In Section 4.5 it was stated that determiners co-occurring with predeterminers contribute no quan-
tifier semantics. The fact that demonstratives introduce two relations in the MRS gives us a simple
way to distinguish between semantic representations of sentences with a predeterminer and a demon-
strative determiner from semantic representations of sentences with a predeterminer and a definite
article. More specifically, there have to be versions of prenominal demonstratives that do not intro-
duce quantifier semantics as well, with marking constraints similar to the ones on the vacuous definite
articles presented in Section 4.5. These determiners are however not semantically vacuous, they still
introduce the special predicate in the restrictor of the quantifier. The quantifier relation is introduced
by the predeterminer, as before.

In the presence of a predeterminer, NPs with postnominal demonstratives and NPs with prenom-
inal demonstratives have similar MRSs, too. An example MRS is in Figure 4.21. It is the MRS for the
sentences todos esses carros avariaram and todos os carros esses avariaram (all those cars broke down).

To control the co-occurrence restrictions between the set of determiners and postnominal demon-
stratives in (91), the relevant determiners are constrained to select for a sister with DEMONSTRATIVE

of type absent.

4.14.2 Postnominal Possessives

Postnominal possessives are constrained to occur in indefinite NPs or NPs introduced by a demon-
strative (Section 4.9).

We expand the features under MK-VAL with the attribute POSSESSIVE. The new attribute records
the presence of a possessive.

The HEAD of postnominal possessives has constraints similar to the other elements in the same NP
slot (Position VIII):

124 CHAPTER 4. NP SYNTAX AND SEMANTICS

mrs

LTOP h1 h
INDEX e2 e

RELS

〈

_todo_q_rel
LBL h3 h
ARG0 x4 x
RSTR h6 h
BODY h5 h

,

_esse_a_rel
LBL h7 h
ARG0 e8 e
ARG1 x4

,

_carro_n_rel
LBL h7

ARG0 x4

,

_avariar_v_rel
LBL h9

ARG0 e2

ARG1 x4

〉

HCONS

〈

qeq
HARG h1

LARG h9

,

qeq
HARG h6

LARG h7

〉

Figure 4.21: MRS of a sentence with predeterminer and a demonstrative. The sentence is todos esses carros
avariaram (all those cars broke down).

postnominal-possessive

MARKER

post-only-marker-min

MARK

basic-marking

MK-VAL

POSSESSIVE present
CARDINAL 1

ORDINAL 2

INDEF-SPEC 3

DEMONSTRATIVE 4

SELECT|LOCAL|CAT

HEAD noun

MARKING

basic-marking

MK-VAL

POSSESSIVE absent
CARDINAL 1

ORDINAL 2

INDEF-SPEC 3

DEMONSTRATIVE 4

Just like the feature DEMONSTRATIVE is percolated in postnominal possessives, so must the fea-
ture POSSESSIVE be percolated in postnominal demonstratives and other functors, so the constraints
presented in the previous sections must be expanded in order to accommodate the new feature POS-
SESSIVE.

The co-occurrence of prenominal and postnominal possessives can be prevented by constraining
prenominal possessives to also select for a sister with POSSESSIVE absent.

The same attributes (the ones under MK-VAL) can also be used to constrain the different distribu-
tion of prenominal and postnominal possessives, by expanding the type hierarchy of types appropri-
ate for these features in order to include information relating to realization and also word order. The
new type hierarchy is in Figure 4.22, and these features (CARDINAL, ORDINAL, etc.) are still declared to
be of type present-or-absent, as presented above.

With this hierarchy, postnominal possessives have posthead-present under HEAD|MARKER|MARK|

MK-VAL|POSSESSIVE instead of present, while prenominal possessives have this feature with the value
prehead-present. Definite articles, which cannot co-occur with postnominal possessives, select for sis-
ters with SYNSEM|LOCAL|CAT|MARKING|MK-VAL|POSSESSIVE absent-or-prehead-present. As usual, all
functors that are not possessives must percolate this feature by unifying their MARKER|MARK|MK-VAL

4.15. SUMMARY 125

absent-or-prehead-present

present-or-absent

present absent-or-posthead-present

prehead-present absent posthead-present

Figure 4.22: Type hierarchy under present-or-absent (final version — 2/2). Previous version on p. 100.

|POSSESSIVE with their MARKER|SELECT|LOCAL|CAT|MARKING|MK-VAL|POSSESSIVE.
Indefinite determiners can directly select a sister with MARKING of type no-poss-marking, since they

cannot co-occur with prenominal possessives, in a way similar to the way cardinal determiners are
defined in Section 4.11.

Prenominal demonstratives, which can co-occur with both prenominal and postnominal posses-
sives, do not need to constrain the feature POSSESSIVE.

The constraints just presented are completely stipulative. If we cannot identify a correlation be-
tween relative word order between noun and possessive and another property, be it semantic or syn-
tactic, there is no way to escape a stipulative constraint. Indeed, the partition of syntactic and seman-
tic contexts induced by relative order between possessive and noun does not have easily identifiable
correlates: it is not a matter of definiteness, because demonstratives pattern differently from definite
articles, and, unlike English, where this can introduce indefinite specific NPs, demonstratives never
have indefinite readings in Portuguese.

4.15 Summary

In this chapter we presented the analysis of NP structure and semantics for Portuguese that has been
implemented in LXGram.

We focused on several NP constituents: predeterminers, determiners, prenominal possessives,
cardinals, ordinals, markers of indefinite specific NPs, prenominal adjectives modifying the head
noun, postnominal adjectives that realize an argument of the noun’s semantic relation, postnominal
modifying adjectives, postnominal possessives, postnominal demonstratives, PP and AdvP modifiers
of nouns, and relative clauses.

We described their place within the noun phrase. We modeled co-occurrence restrictions among
these elements, word order constraints, and their role in the composition of the meaning of the NP.
We illustrated the implementation of these phenomena in LXGram with examples, granting empirical
support to the system of constraints developed to model NP syntax and semantics.

126 CHAPTER 4. NP SYNTAX AND SEMANTICS

5
Noun Ellipsis and Missing

Noun Generics
5.1 Overview

In this chapter, we present an analysis of noun phrases where the head noun is not present.
The most widespread treatment of such constructions is to consider the existence of an empty

noun, with an orthographic form that is the empty string. Here we develop an approach that does not
resort to empty categories. Empty categories present non-trivial computational problems for parsers,
and the systems where LXGram runs do not support them.

We present relevant data to illustrate the properties of such constructions. We also discuss promi-
nent analyses in the literature. A solution that does not involve null elements is then developed.
Several aspects are discussed — syntax, semantics, contextual information —, how they can be in-
tegrated in HPSG, and to a large extent, implemented in the LKB. Implementation details are also
provided.

5.2 Subject Matter

In some NPs there is no overt head noun. Some examples are in (95).

(95) a. [My parents] were here on holidays with [John’s -].
b. [The rich -] always abuse [the poor -].

The sentence in (95a) is however very different from the one in (95b) with respect to the semantics
of the missing nouns. In (95a) the noun form parents is recoverable from context, but in (95b) the
missing noun (something close to people) is independent of context and its semantics can be described
as generic.

For this reason, the phenomenon in (95b) has been referred to as people deletion (Pullum, 1975)) or
null-N generics (Nerbonne and Mullen, 2000). Here we will adopt the designation missing-N generics,
in order to remain neutral to the status of non-realized elements.

On the other hand, the phenomenon in (95a) is known as noun ellipsis.
English employs anaphoric one (also known as one anaphor) in several contexts where languages

that lack this item, e.g. Portuguese, exhibit a missing noun. One anaphor has the same semantics as
noun ellipsis, and never the semantics of missing-N generics as far as one can tell from the literature.
The cases where one anaphora are employed are also relevant for our discussion, since we will be
focusing on Portuguese, which resorts to not realizing the noun in these circumstances. There is not
a one-to-one correspondence between one anaphora and noun ellipses: in (96) there is a Portuguese
example corresponding to anaphoric one and one example where both languages lack the head noun.

127

128 CHAPTER 5. NOUN ELLIPSIS AND MISSING NOUN GENERICS

(96) a. a
the

casa
house

azul
blue

e
and

[a
the

- verde
green

]

the blue house and the green one
b. algumas

some
crianças
children

com
with

chapéu
hat

e
and

[algumas
some

- com
with

boné
cap

]

some children in hats and some in caps

As will be apparent in the following discussion, the syntax of noun ellipsis and null-N generics is
essentially the same. Their semantics, however, are different, since missing-N generics do not have
an antecedent, typically denote humans and carry kind readings, whereas noun ellipsis always has
an antecedent and is not semantically restricted in these ways.

In this connection, it is worth noting that the difference between the two constructions (NP ellipsis
and missing-N generics) also involves lexical idiosyncrasies. For example, the Portuguese NP in (97a),
when taken in isolation, is ambiguous between the noun ellipsis and the missing-N generic reading,
as its two English correlates indicate. The English correlate with anaphoric one corresponds to the
ellipsis reading, and the English correlate with a missing noun corresponds to the missing-N generic
reading.

(97) a. [os
the

pobres
poor

-]

the poor (missing-N generic reading)
the poor ones (noun ellipsis reading)

b. [os
the

dois
two

-]

the two (noun ellipsis reading)

The NP in (97b) lacks the missing-N generic reading, and, accordingly, only has one English corre-
late. But in this case, English surprisingly uses the missing noun strategy, although one would expect
noun ellipsis readings to correspond to anaphoric one here, too.

We will not go very deeply in the distribution of the English anaphoric one here, though, as our
focus is on Portuguese.

It is worth pointing out that missing-N generics do not imply the presence of an adjective. The fact
that a sentence like Some like it hot is the title of a motion picture indicates that the subject NP must be
headed by a generic because it cannot be headed by an ellipsis: since this sentence can be uttered out
of the blue, there does not need to be antecedent for it to be interpreted. More examples illustrate this
point:

(98) a. os
the

sem
without

abrigo
shelter

the homeless
b. Os

the
que
who

podem
can

ajudar
help

nunca
never

ajudam.
help

The people who can help never do so.

5.3 Data

The following is a list of typical properties of NP ellipsis and missing-N generics that have been
reported in the literature.

5.3. DATA 129

As these constructions are to be viewed as a phenomenon different from null arguments, at least
one specifier, one complement or one modifier is present in the elliptical NP.

In some languages, like German, ellipsis cannot be NP initial (Netter, 1996), but others, like Por-
tuguese, allow it:

(99) a. Alte
old

Männer
men

mit
with

Hut
hat

haben
have

[junge
young

- mit
with

Mütze
cap

] getroffen.
met

Old men in hats met young ones in caps.
b. * Alte Männer mit Hut haben [- mit Mütze] getroffen.
c. Discussion about a purple and pink jellyfish found on a beach:

Nunca
never

tinha
I had

visto
seen

[- com
with

estas
these

cores
colors

].

I had never seen ones with these colors.

In some languages, some determiners, like the English definite articles, cannot alone form an NP
(English example from (Lobeck, 1995) in (100a)), while other determiners can (cf. (100b) from the
same source). It must be noted that we are assuming, like much of the literature on noun ellipsis, that
if an item can appear in an NP which is restrictively modified, it is not a pronoun but a determiner,
since we also assume that restrictive modifiers attach to N and pronouns are full NPs. Therefore, some

in (100b) cannot be a pronoun, because it can appear in NPs like some that we tasted.

(100) a. * A single protester attended the rally because [the -] apparently felt it was important.
b. We tasted many wines, and I thought that [some -] were extremely dry.

In some languages that have pre-head and post-head adjectives, like Portuguese and Spanish, pre-
head ones cannot appear in this construction (Spanish example in (101a) from (Ticio, 2005)), although
postnominal adjectives can (Portuguese example in (101b)).

(101) a. * Ayer
yesterday

vi
I saw

a la
the

verdadera
true

terrorista
terrorist

y
and

a [la
the

supuesta
alleged

-].

Yesterday I saw the real terrorist and the alleged one.
b. a

the
terrorista
terrorist

real
real

e
and

[a
the

- imaginada
imagined

]

the real terrorist and the imagined one

This has sometimes been correlated with intensionality, since at least some prenominal adjectives
are intensional. However, as pointed out by Abeillé and Godard (1999), word order and intensionality
are at best weakly related.

In addition, the elliptical NP relies on an antecedent to be interpreted, from which it inherits gen-
der as well as subcategorization and count or mass properties (Netter, 1996; Masullo, 1999), exempli-
fied in (102), but not necessarily number (103):

(102) a. die
the

starke
strong

Konzentration
concentration

auf
on

die
the

Wirtschaft
economy

und
and

[die
the

weniger
less

grosse
large

- auf
on

den
the

Umweltschutz
environment

]

the strong concentration on the economy and the less large on the environment
b. * Juan

Juan
visitó
visited

a [sus
his

tíos
uncles/aunts

MASC] y
and

Pedro
Pedro

visitó
visited

a [la
the

- suya
his

FEM].

(intended:) Juan visited his aunt and uncle and Pedro visited his aunt.

130 CHAPTER 5. NOUN ELLIPSIS AND MISSING NOUN GENERICS

(103) a. Juan
Juan

visitó
visited

a [sus
his

tíosPLURAL]
uncles/aunts

y
and

Pedro
Pedro

visitó
visited

a[l
the

- suyoSINGULAR]
his

Juan visited his aunt and uncle and Pedro visited his uncle.

In this dissertation, we will not describe how the various co-occurrence restrictions mentioned in
this section can be controlled. This was done in (Branco and Costa, 2006), based on an analysis of
missing noun constructions quite similar to the one presented in this chapter. We will not repeat here
the solutions developed there.

5.4 Previous Accounts

Many previous analyses of NP ellipsis, either in the HPSG framework (e.g. (Netter, 1996; Nerbonne
and Mullen, 2000)) or under other theoretical persuasions (e.g. (Lobeck, 1995; Ticio, 2005)), assume
an empty category approach where the missing noun is assumed to be an actual, though phonetically
null, lexical item.

In line with a view of grammar free of reified empty categories, alternatives to this approach have
been advanced as well. One of such alternatives was put forward in (Winhart, 1997) and consists in
analyzing adjectives in elliptical NPs as the result of a nominalization lexical rule. A major problem
for this account, pointed out in (Netter, 1996), is that it cannot derive an elliptical NP where the
adjective has modifiers (104).

(104) die
the

ziemlich
quite

alten
old

Männer
men

und
and

[die
the

[besonders
particularly

jungen
young

] -]

the quite old men and the particularly young ones

The same problem arises with missing-N generics — consider cases like the desperately poor. A
lexical rule is not appropriate because these modifiers attach to adjectives in syntax, but no syntactic
category will be adjectival, since the adjective has been converted to a noun in the lexicon.

A similar analysis, based on explaining away the data via some category change of the elements
occurring in elliptical NPs, might be envisaged for determiners: when items from these categories
appear in elliptical NPs, they could be taken as pronouns, either as a result of some lexical rule, or
even as homonymous items included in the lexicon from the start. Such an approach has also found
appropriate appreciation and criticism in (Nerbonne and Mullen, 2000), the main argument against it
being the possibility of restrictive modification.

Another line of research has been to propose the underspecification of adjectives and other NP
elements so that they can function as nouns as well. A crucial problem here concerns how the seman-
tics of the NP is composed given that modifying adjectives (of semantic type 〈〈e, t〉,〈e, t〉〉) and nouns
(of semantic type 〈e, t〉) , for instance, make different contributions to its semantic content. This is the
approach explored in (Beavers, 2003b) for nouns and determiners. That work is limited in its range
because it only covers elliptical NPs with a single determiner.

Another option to be explored for an analysis that does not resort to empty categories is to use
a unary syntactic rule, which can operate in tandem with the usual Head-Specifier or Head-Adjunct
schemata. This possibility is appreciated in (Netter, 1996), to be dismissed as being theoretically
uninteresting. Taking into account, however, how the use of unary schemata has been enhanced since
then,1 this is clearly an option worth considering, and it is the approach that will be explored in the
next Sections.

1Ginzburg and Sag (2000) make heavy use of them, also in the analyses of constructions related to ellipsis, like sluicing, and Sag (2000)
employs a syntactic rule to handle VP ellipsis that in some cases may be unary.

5.5. A UNARY SYNTACTIC RULE 131

Two computational HPSGs for German (Müller and Kasper, 2000; Müller, 1996) indeed use unary
syntactic rules that apply to noun adjuncts and produce a noun-headed projection.

The analysis proposed in the following chapters presents a unified treatment of noun adjuncts and
determiners in noun ellipsis constructions.

5.5 A Unary Syntactic Rule

In the approach developed in the previous chapters, both for specifiers and adjuncts, the information
about their head can be found in a single place in their grammatical representation (viz. the SELECT

feature), and the same holds for the information on the nature of the constituents they yield when
they are attached to their head (under the MARK feature). This account of NPs in general brings
two important advantages: (1) specifiers and modifiers receive a uniform treatment; (2) since most
syntactic properties of the constituent resulting from the attachment of a functor with its head are
present in the functor, they will be known even if the head is missing. Therefore, a single schema for
missing noun constructions can be implemented for both specifiers and adjuncts ensuring syntactic
structures that replicate to the widest extent possible the ones obtained when the nominal head is not
missing.

Against this background, NPs with a missing head and no complements can be easily accounted
for with the help of a single syntactic schema basic-missing-n-phrase, which is a straightforward unary
version of the functor phrases presented in the previous chapters for NPs, but now without the HEAD-
DTR. Some properties of this schema are:

• the MARKING value of the mother node is given by its functor’s MARK value;

• the SYNSEM of the mother node is partly shared with the SYNSEM of the functor’s SELECT value:
it is shared at least for the features HEAD and VAL.2 As for the remainder features, note that,
on the one hand, the SYNSEM|LOCAL|CONT|RELS of the mother node must be the union of the
functor’s RELS with a multi-set of relations corresponding to the denotation of the missing noun;
on the other hand, the MARKING values (i.e. the MARKING feature of the mother node and the
MARKING feature of the synsem in the SELECT attribute of the functor) may be incompatible and
should not be shared at all;

• the HEAD of the mother is constrained to be a noun (functors not selecting nouns via the SELECT

feature will thus not be eligible to feed this syntactic rule), and its COMPS should be inherited
from the antecedent.

• As with binary Head-Functor constructions, the functor daughter is required to be a saturated
phrase. The type saturated-cat, already employed before in Head-Functor constructions, can also
be used here. This ensures that e.g. a PP can feed this rule, but not a preposition.

Hence, given an NP with a non-realized head, this schema will directly apply to the functor with
the most specific marking type. The other functors will be combined as expected, following the usual
schemata in place also for NPs with an overt head.

Figure 5.1 depicts the syntactic constraints associated with the missing noun schema. The semantic
properties of this construction are discussed in Section 5.8.

2These are the same features that are shared between the mother and the head daughter in a Head-Functor phrase.

132 CHAPTER 5. NOUN ELLIPSIS AND MISSING NOUN GENERICS

basic-missing-n-phrase

SYNSEM|LOCAL|CAT

HEAD 1 noun
VAL 2

MARKING 3

ARGS

〈

SYNSEM|LOCAL|CAT

saturated-cat

HEAD|MARKER

SELECT|LOCAL|CAT

[

HEAD 1

VAL 2

]

MARK 3

〉

Figure 5.1: Outline of the schema for missing noun constructions.

5.5.1 Example

We present the parse tree for the NP estes dois (these two) in Figure 5.2. The numeral dois (two) feeds
the basic-missing-n-phrase rule and yields a node with [HEAD noun] and [MARKING no-poss-marking].
The determiner attaches as expected, via functor-head-phrase, giving rise to a node with [MARKING sat-
urated], a full (saturated) NP. The resulting structure is completely parallel to the one of an NP like
estes dois carros (these two cars), except for the missing N node and the branch connecting it.

In general, NPs with missing nouns are derived by an application of the missing N rule to the
most embedded constituent as defined by the marking hierarchy and the constraints on the features
MK-VAL for the various functors involved. The other functors that are present combine as expected,
via the Head-Functor rules presented in Chapter 2. In (105) we show the structures produced by the
present analysis for the Portuguese examples alguns (some), os seus dois (his two), a verde (the green one)
and alguns jovens com chapéu (some young ones in hats). The derivation of the last example relies on the
fact that prenominal adjectives cannot feed the basic-missing-n-phrase (when the noun is realized, the
adjective jovem can attach to either side, as in jovens músicos/músicos jovens — young musicians), the
analysis of which is formalized below.

(105) a. [saturated [D alguns]]

b. [saturated [D os] [poss-marking [Poss seus] [no-poss-marking [Num dois]]]]

c. [saturated [D a] [n-marking [A verde]]]

d. [saturated [D alguns] [n-marking [n-marking [A jovens]] [PP com chapéu]]]

5.6 Transformation of CFGs with Epsilons

Any context free grammar (CFG) with epsilon productions (null constituents) can be transformed
into a context free grammar without any epsilons that is weakly equivalent, i.e. it generates the same
strings (Bar-Hillel et al., 1961). Consider the fragment in Figure 5.3. Its epsilon-free counterpart is in
Figure 5.4.

These two grammar fragments cover exactly the same strings (if terminal symbols are not added,
they cover none), but the parse trees are slightly different.

The analysis just presented is essentially the result of applying the same transformation, this time
to an HPSG. In fact, the parse trees produced with the missing noun constructions are very similar
to the ones yielded by the epsilon free CFG. For instance, an NP consisting of a single determiner

5.7. ANTECEDENT RESOLUTION WITH NOUN ELLIPSIS 133

SS|LOC|CAT

HEAD 1 noun

VAL 2
[

COMPS olist
]

MKG 5 saturated

�
�

�
�

�
�

�
�

�
��

H
H

H
H

H
H

H
H

H
HH

SS|LOC|CAT|HEAD|MKR

[

SEL 4

MARK 5

]

estes
these

SS 4

LOC|CAT

HEAD 1

VAL 2

MKG 3 no-poss-marking

SS|LOC|CAT|HEAD|MKR

SEL|LOC|CAT

[

HEAD 1

VAL 2

]

MARK 3

dois
two

Figure 5.2: Parse for the NP estes dois - (these two). SS abbreviates SYNSEM, LOC abbreviates LOCAL, MKG
abbreviates MARKING, MKR abbreviates MARKER, and SEL abbreviates SELECT.

NP → D N
N → N PPad junct

N → N
N → Npp_comp PPcomplement

N → ε
Npp_comp → ε

Figure 5.3: CFG fragment with epsilons

followed by a PP adjunct receives the structure [NP D [N PP]] both with the CFG in Figure 5.4 and
with the analysis presented before.

A crucial point to note is that the parse trees with the missing noun support the construction of
the same semantic representations as the ones supported by trees with reified orthographically null
constituents.

5.7 Antecedent Resolution with Noun Ellipsis

In this section, we focus on antecedent resolution for the cases where the missing noun is a noun ellip-
sis. As mentioned above, missing-N generics do not have an antecedent, and therefore the following
considerations do not apply to them.

In many cases, it is not possible to distinguish between noun ellipsis and missing noun generics,
so a grammar that tries to recover the antecedent of noun ellipsis will often generate multiple parses
for NPs containing a noun ellipsis, as it will also produce a parse corresponding to a missing noun
generic.

134 CHAPTER 5. NOUN ELLIPSIS AND MISSING NOUN GENERICS

NP → D N
N → N PPad junct

N → N
N → Npp_comp PPcomplement

NP → D
N → PPad junct

N → PPcomplement

Figure 5.4: CFG fragment without epsilons

5.7.1 Data and Generalizations

The relation between an NP with an elided noun and its antecedent has been reported in the literature
to have properties in common with the kind of anaphoric binding ruled by Principle B (Hankamer
and Sag, 1976; Lobeck, 1995, among others; the following examples are theirs). In fact, the antecedent
can be given pragmatically, as in (106a), or be in a different sentence (106b).

(106) a. At a food vendor’s: I’ll take [two -].
b. - John caught a big fish.

- Yes, but [Mary’s -] was bigger.

This is parallel to anaphoric binding according to Principle B (for personal pronouns). Consider
the following examples:

(107) a. At a food vendor’s: I’ll take them.
b. - John caught a big fish.

- Yes, it was.

The way to determine the antecedent may thus be dependent on how anaphoric binding is an-
alyzed in general, which will not be discussed here. But it is worth noting that, whereas in bind-
ing there is an anaphoric relation between NPs, here there is a semantic dependency relation be-
tween predicators. Sentence (99a), repeated below in (108a), illustrates this point clearly: there is no
anaphoric relation between the subject and the object of that sentence. This is true for the German
example in (108a) as well as for its English counterpart in (108b).

(108) a. Alte
old

Männer
men

mit
with

Hut
hat

haben
have

[junge
young

- mit
with

Mütze
cap

] getroffen.
met

Old men in hats met young ones in caps.
b. Old men in hats met young ones in caps.

The relation between the non-realized noun and its antecedent is that the predicate that they con-
tribute to the semantics is identical. Note also that the arguments of that predicate are however
different. That is, the semantics for the German sentence could be like:

exists(x1,exists(x2, hut(x2),

alt(x1)∧mann(x1)∧mit(x1,x2)),

exists(y1,exists(y2,muetze(y2),

jung(y1)∧mann(y1)∧mit(y1,y2)),

tre f f en(x1,y1)))

5.7. ANTECEDENT RESOLUTION WITH NOUN ELLIPSIS 135

where exists represents an existential generalized quantifier.3 The piece of semantics associated to the
missing noun is mann(y1) and the one associated to its antecedent is mann(x1). Although it is the same
relation, it is instantiated differently. There is no anaphoric relation between the variables x1 and y1 in
that formula.

Note that there can be an anaphoric relation between noun ellipsis or anaphoric one and their an-
tecedent, as in (109a) for noun ellipsis and (109b) for anaphoric one, although it is not co-referentiality.
In this example, anaphoric one stands for apples that Bill bought, a behavior similar to that of e-type
pronouns.4 As mentioned above, this is not always the case.

(109) a. O
the

Bill
Bill

comprou
bought

algumas
some

maçãs.
apples

[Todas
all

as
the

vermelhas
red

-] estavam
were

podres.
rotten

Bill bought some apples. All the red ones were rotten.
b. Bill bought some apples. [All the red ones] were rotten.
c. Bill bought some fruit. [All the red apples] were rotten.

However, anaphoric relations can hold between NPs without noun ellipsis or anaphoric one, as in
(109c). In this example, apples stands for apples that Bill bought, thus entering an indirect anaphoric
relation. So we conclude that anaphoric behavior is not a defining characteristic of noun ellipsis or of
one — they are independent.

Although the relation between noun ellipsis or one and their antecedent is not necessarily anaphoric,
we will continue using the expressions one anaphor and anaphoric one in this text.

In any case, it is not entirely clear that this kind of semantic dependency must be captured by
anaphoric relations or is rather simply a matter of pragmatic restriction on the quantifiers involved.
In fact, similar data is invoked in (Nerbonne et al., 1989) in order to claim that the antecedent of
noun ellipsis can be a non-atomic expression (110a). The authors also mention that sometimes this
dependency is blocked (110b).

(110) a. Ten students attended the meeting. [Three -] spoke.
b. Most deliveries were on time, but [some -] weren’t.

The sentence in (110a) contrasts with the one in (110b). In the first the information that is missing
is students that attended the meeting, whereas in the latter it is only deliveries that is understood, not
deliveries that were on time. Nerbonne et al. (1989) point out that the second kind of reading is not
restricted to cases where a contradiction would be produced ((110b) would be contradictory with the
first kind of reading), and present examples which we will omit here.

Once again, this does not seem to be directly related to an absent noun. One still finds the same
contrast with realized nouns:

(111) a. Ten students attended the meeting. Three students spoke.
b. Most deliveries were on time, but some deliveries weren’t.

The second sentence in (111a) is also interpreted as Three students that attended the meeting spoke,
whereas the second sentence of (111b) is not contradictory. For detailed discussions, see studies like
the one of Moxey and Sanford (1987) on so-called complement anaphora.

3Its first order counterpart is ∃x1∃x2∃y1∃y2[alt(x1)∧mann(x1)∧hut(x2)∧mit(x1,x2)∧ jung(y1)∧mann(y1)∧muetze(y2)∧mit(y1 ,y2)∧

tre f f en(x1 ,y1)].
4A popular example in the literature is Every host bought just one bottle of wine and served it with dessert. Here, the pronoun it stands

for the bottle of wine that x bought, where x is the variable bound by the universal quantifier.

136 CHAPTER 5. NOUN ELLIPSIS AND MISSING NOUN GENERICS

We thus assume that these effects are also a (possibly pragmatic) phenomenon that affects both
overt and covert nouns, about which we have nothing to say here. It seems safe to conclude that it is
sufficient to recover the predicate of the antecedent and let the (pragmatic) mechanism responsible for
the contrast in (111) also produce the contrast in (110), i.e. pragmatics (or whatever other mechanism
underlies these interpretations) must operate on the output of resolution of noun ellipsis antecedents.

Sensitivity to Word Sense

Nerbonne et al. (1989) also present the datum in (112).

(112) ? Bill broke his leg falling over a log, and Lois entered it in her daily one.

The point here is that recovery of information from the antecedent is sensitive to word sense. The
word log is used with the sense part of tree trunk, and one is intended to take it as its antecedent, but
with the sense record. The result is infelicitous.

We can assume that word sense is visible in the semantics, e.g. the two word senses of log could
give rise to two different predicates in the semantic representations. In practice, computational HPSGs
cannot perform word sense disambiguation in general though,5 so it is often the case that the semantic
representations that they produce in parsing do not specify word sense.

There my be many ways to integrate word sense with HPSGs. We can assume for simplicity that
word sense can be modeled via the type hierarchy, since relation names are also types. In the case of
the word log, we could have the type _log_n_rel with the two subtypes _log_n_1_rel and _log_n_2_rel.
If the relation _log_n_1_rel denotes the set of tree trunks and _log_n_2_rel the set of records, _log_n_rel
denotes the union of these two sets (i.e. something that is a tree trunk or a record). This would also
be the relation presented in the MRSs produced by a computational grammar.

If antecedent resolution is implemented via unification of predicate names, and if a grammar could
enforce semantic restrictions between these predicates and contextual information (i.e. with lexical
semantics) the above example could be blocked based on the co-occurrence of conflicting constraints.

The other elements in the first clause would force a reading with _log_n_1_rel, and the elements
in the second clause would force one with _log_n_2_rel. So this sentence would be blocked because
of unification failure between _log_n_1_rel and _log_n_2_rel (i.e. we would be saying that nothing can
simultaneously be a tree trunk and a record). But computational grammar use constraints on lexical
semantics in a very limited way, if at all, for technical reasons, so we cannot resort to an implementa-
tion using lexical semantics.

The point here is that the previous considerations may lead one to think that antecedent resolution
must operate on the output of word sense disambiguation (and that we cannot resolve antecedents
without having first disambiguated word sense), but this is not true: a grammar can still produce
semantic representations underspecified with respect to word sense and resolve antecedents; subse-
quent word sense disambiguation would produce conflicting constraints that would block sentences
like (112).

Under an approach where word sense is represented by typing relation names, all that is required
is that the relation names of antecedent and (resolved) missing noun be unified. This note is impor-
tant, because, we will be resolving antecedents but not word sense.

5It can only be done when word sense differences correlate with syntactic differences and these are present in the input. In this case
a different lexical entry is required for each sense. This strategy can also be used when there are no syntactic differences between word
senses, but it will just multiply parses. Word sense disambiguation will still be required, disguised as parse selection.

5.7. ANTECEDENT RESOLUTION WITH NOUN ELLIPSIS 137

Similarities with Principle B

It has been stated that antecedent resolution of noun ellipses or anaphoric one has much in common
with binding according to Principle B (Lobeck, 1995). There is a difficulty in interpreting this claim
in that binding principles describe relations between full NPs, while the relation between noun el-
lipses/anaphoric one and their antecedents is one between nouns. It appears that what is meant is
that if the problem is cast in terms of the NPs of which these nouns are heads then a parallelism can be
made with binding principles. Under this interpretation, noun ellipses and one anaphora share with
pronominals (the elements that bind according to Principle B) several aspects:

• The antecedent can be given pragmatically or in a different sentence, as illustrated above in
(106).

• They are subject to the Backwards Anaphora Constraint (they cannot precede their antecedent
unless they are in a subordinate clause). Example (113a) is from (Lobeck, 1995).

(113) a. Because she doesn’t like meat, Sue ate fish.
b. Because some - were rotten, Sue threw away all the apples in the fridge.

• They can violate the Complex NP Constraint (the ellipsis can be inside a sentence inside another
NP). Example (114a) is also from (Lobeck, 1995).

(114) a. Bill really likes his new car. I think that [NP the fact that it is an antique] was a big
selling point.

b. Bill really likes his new cars. I think that [NP the fact that some - are antiques] was
a big selling point.

• They can can have split antecedents:

(115) a. Jack went fishing with Jill. They caught a lot of fish.
b. Jack bought apples and oranges. The better looking ones had a bad taste.

Even so, example (99a), repeated below in (116a), and its Portuguese counterpart in (116b) present
a case parallel to binding according to Principle A.

(116) a. Alte
old

Männer
men

mit
with

Hut
hat

haben
have

[junge
young

- mit
with

Mütze
cap

] getroffen.
met

Old men in hats met young ones in caps.
b. Homens

men
velhos
old

de
of

chapéu
hat

encontraram
met

[- novos
young

de
of

boné.]
cap

Old men in hats met young ones in caps.

From this discussion, we can draw some conclusions, and sketch an HPSG analysis, which is
unfortunately not implementable in the LKB— see the next Section.

5.7.2 Towards an Analysis of Antecedent Resolution of Noun Ellipses

An account of antecedent resolution for noun ellipsis/anaphoric one cannot resort to unification of
noun relations, because the arguments of these relations would be instantiated with the same values,
as they would also be unified. Only their names can be unified (the feature PRED). However, the arity

138 CHAPTER 5. NOUN ELLIPSIS AND MISSING NOUN GENERICS

of the relation contributed by the noun that serves as the antecedent of a noun ellipsis must be copied
somehow, along with its name.

We can think of this as a function clone that returns a copy of its argument. Crucially, the feature
structure that is returned is not reentrant with the feature structure that is the input to that function.6

Information about number also needs to be erased, since a noun ellipsis and its antecedent can
have different number values. We assume a function erase_num that does precisely this. Function
erase_num is a function from local objects to local objects.

Lexical units for nouns could have a constraint like

SYNSEM|LOCAL 1

INTRODUCED-N-ANTECEDENTS
{

1
}

where INTRODUCED-N-ANTECEDENTS contains the possible antecedents for ellipsis or anaphoric one

that are introduced by this item, and will be empty for all lexical items that are not nouns (the way
the value of this feature is calculated is presented below).

Anaphoric one and noun ellipsis7 could then have constraints like the following, where the two
functions mentioned above are employed:

SYNSEM|LOCAL erase_num(clone(1))

INTRODUCED-N-ANTECEDENTS {}

POSSIBLE-N-ANTECEDENTS
{

· · · , 1 , · · ·
}

i.e. the LOCAL value of noun ellipsis is type-identical to an element of POSSIBLE-N-ANTECEDENTS,
with number information removed. This is its antecedent. The feature POSSIBLE-N-ANTECEDENTS is
instantiated elsewhere and propagated to the noun ellipsis sign (see below).

Noun ellipsis also seems to add its antecedent to INTRODUCED-N-ANTECEDENTS (which is not
patent in the constraints presented), but this is not entirely clear. Consider the examples in (117).

(117) a. Although we tasted many wines, I thought some were extremely dry. [A few -] were
very good, though.

b. Although we tasted many wines, I thought some whiskeys were better. [A few -] were
very good, though.

In the second example it is difficult to interpret the ellipsis as having the form wines as its antecedent.
The form whiskeys would seem a better candidate, were it not for the item though. So the first exam-
ple, where wines is the antecedent for both ellipses, may indicate that ellipsis makes its antecedent
available for further ellipses.

However, it is not clear whether it is a syntactic effect — a syntactic explanation could claim that
wines would not be available as an antecedent outside its sentence because it is in an embedded clause
(the analysis presented here will not predict this however)— or rather a matter of performance (re-
cency, short term memory).

6It can be seen as producing a “deep clone”, along the practice of some object oriented programming languages (Arnold et al., 2005).
That is, all subfeatures are recursively cloned.

Sometimes the expression type identity is used within HPSG to refer to this sort of relation, with unification being referred to as token

identity, by contrast.
7There is no lexical entry for the null noun in our analysis, which uses unary syntactic rules for noun ellipsis constructions, as presented

so far. But in Section 5.9.1 we will use a lexical type for the missing noun, in spite of maintaining the unary rule approach.

5.7. ANTECEDENT RESOLUTION WITH NOUN ELLIPSIS 139

INTRODUCED-N-ANTECEDENTS and POSSIBLE-N-ANTECEDENTS have to be sets of LOCAL objects (of
type local), since the information taken from the antecedent includes semantic as well as syntactic
information (e.g. subcategorization).

The interesting question is then how the values of the features POSSIBLE-N-ANTECEDENTS and
INTRODUCED-N-ANTECEDENTS are calculated in phrases. The basic idea is that INTRODUCED-N-ANTECEDENTS

can be propagated up a syntactic tree via set union until the root node is reached, at which point it
is converted into POSSIBLE-N-ANTECEDENTS with the possible addition of pragmatic or discourse an-
tecedents. POSSIBLE-N-ANTECEDENTS is then propagated down the tree in a way that is possibly
sensitive to linear precedence and subordination.

More precisely, the value of INTRODUCED-N-ANTECEDENTS in the mother node of phrases is the
union of the values of this feature in all the daughters. Binary phrases thus have a constraint like:

INTRODUCED-N-ANTECEDENTS A ∪ B

ARGS

〈

INTRODUCED-N-ANTECEDENTS A

INTRODUCED-N-ANTECEDENTS B

〉

Unary phrases simply pass up INTRODUCED-N-ANTECEDENTS:

INTRODUCED-N-ANTECEDENTS A

ARGS

〈

[

INTRODUCED-N-ANTECEDENTS A

]

〉

In root nodes, which can be produced by rules specific to root nodes, we can make use of another
feature, CONTEXT-N-ANTECEDENTS, to contain the antecedents that are given pragmatically or in a
preceding sentence. Root nodes must have the constraints:

CONTEXT-N-ANTECEDENTS A

INTRODUCED-N-ANTECEDENTS B

POSSIBLE-N-ANTECEDENTS A ∪ B

The value of the feature CONTEXT-N-ANTECEDENTS can be produced from several sources. It can be
considered empty, in which case the grammar cannot pick up antecedents outside the sentence where
a noun ellipsis occurs (but sentences with a noun ellipsis will not receive a parse if no noun precedes
the noun ellipsis, because the constraint on the noun ellipsis sign according to which its LOCAL is in
POSSIBLE-N-ANTECEDENTS will fail as this feature will have an empty set as its value).

If a grammar is prepared to parse multi-sentence strings, the feature CONTEXT-N-ANTECEDENTS

can be instantiated from the value of POSSIBLE-N-ANTECEDENTS of the preceding sentence or sen-
tences. Alternatively, it can be filled by components external to the grammar.

Assuming at most binary branching, most binary phrases can instantiate the value of POSSIBLE-N-
ANTECEDENTS in their daughters with the constraints:

POSSIBLE-N-ANTECEDENTS A

ARGS

〈

[

POSSIBLE-N-ANTECEDENTS A - B

]

,

POSSIBLE-N-ANTECEDENTS A

INTRODUCED-N-ANTECEDENTS B

〉

140 CHAPTER 5. NOUN ELLIPSIS AND MISSING NOUN GENERICS

where the first element of ARGS denotes the left daughter and the second one the right daughter
(see Section 3.4.1). The possible antecedents of the left daughter do not contain the ones that are
introduced in the right daughter, since in most cases a noun ellipsis cannot precede its antecedent.
Unary constructions simply identify their POSSIBLE-N-ANTECEDENTS with that of its sole daughter.

Constructions responsible for subordination must allow the nouns introduced in the right daugh-
ter (the main clause) to be possible antecedents in the left daughter (the subordinated clause — cf.
(113b)). Adverbial subordinate clauses must then be introduced by specific constructions, with the
constraints:8

POSSIBLE-N-ANTECEDENTS A

ARGS

〈

[

POSSIBLE-N-ANTECEDENTS A

]

,
[

POSSIBLE-N-ANTECEDENTS A

]

〉

That is, unlike the constraints for the remaining binary phrases, the constraints on phrases for
head-final adverbial subordination do not subtract the set of noun antecedents introduced in the right
daughter from the set of possible antecedents of the left daughter.

Finally, we can make an adjustment in lexical items. As explained so far, for every noun its LOCAL

will be a member of its POSSIBLE-N-ANTECEDENTS. Although this is innocuous, since overt nouns do
not need to be resolved with respect to an antecedent, it is also spurious. We can add a constraint to the
syntactic rules that prevents the LOCAL element of a daughter from being a member of its POSSIBLE-N-
ANTECEDENTS. The constraints on binary phrases look like this after this adjustment (the constraints
on phrases for adverbial subordinate clauses may remain unchanged as none of their daughters will
be a noun):

POSSIBLE-N-ANTECEDENTS A

ARGS

〈

SYNSEM|LOCAL 1

POSSIBLE-N-ANTECEDENTS A - B -
{

1
}

,

SYNSEM|LOCAL 2

POSSIBLE-N-ANTECEDENTS A -
{

2
}

INTRODUCED-N-ANTECEDENTS B

〉

The features INTRODUCED-N-ANTECEDENTS, POSSIBLE-N-ANTECEDENTS and CONTEXT-N-ANTECEDENTS

do not need to be under SYNSEM, since there do not appear to be any items that subcategorize for a
constituent with a particular value in one of these attributes. Therefore, we define them to be appro-
priate for sign.

This mechanism was not implemented in the LKB. The LKB does not allow for the definition of
arbitrary functions, like clone above, or support basic operations on collections, like testing for set
membership or computing set difference, which are necessary for this analysis.

The analysis sketched here is intended to be an initial approximation to antecedent resolution of
noun ellipsis, on which more interesting ones could be developed in the future. We do not claim
that it is a fully satisfying solution. It does not allow for split antecedents and it does not allow for
noun ellipses in a complex NP subject (or in any subordinate clause that is not adverbial) to have an
antecedent in the main clause, as in (118).

8At this point the INTRODUCED-N-ANTECEDENTS of the subordinate clause could be put in a different set, not presented here, so that
these elements could be subtracted from the CONTEXT-N-ANTECEDENTS of subsequent sentences, if what is claimed above about the
examples in (117) is true.

5.8. SEMANTICS 141

(118) The fact that [some -] were extremely dry did not prevent us from tasting many wines.

It might also be interesting to consider using lists instead of sets, so that element order could
represent recency, which might be a useful heuristic for choosing a single antecedent when several
are possible.

We present an example in Figure 5.5, for the sentence men in hats met ones in caps. The presents
analysis predicts that hat is also a possible antecedent for the anaphoric one in that example. This is
a correct possibility (from the syntactic perspective), in view of sentences like some men with old hats

bought new ones. The example also illustrates the fact that uniquely identifying antecedents of ellipses
requires domain knowledge (men can be in caps, whereas it is difficult for hats to be), and in this
example recency does not help. A final comment is that there is still some superfluous information,
with the feature POSSIBLE-N-ANTECEDENTS containing several elements in nodes that dominate no
ellipsis or anaphoric one. This could be amended, but we do not pursue it here.

It is worth pointing out that the mechanism proposed here for resolving the antecedent of noun
ellipsis has many similarities with more general algorithms proposed for anaphora resolution, for
instance the one of Branco (1999, 2002), which also manipulates collections of antecedent candidates
along parse trees. It will be important to work out the present proposal in connection to those more
general mechanisms of anaphora resolution, whose insights could be incorporated here.

5.8 Semantics

We sketch a first approximation to the semantics of constructions with missing nouns, ignoring the
antecedent if the missing noun is a noun ellipsis, since, as discussed previously, antecedent resolution
is not straightforwardly implementable in the LKB and is not fully determinable from syntactic form
or configuration alone. More details on the composition of semantics in missing noun constructions
will be presented in the subsequent sections.

Figure 5.6 shows the semantic constraints on basic-missing-n-phrase.
Its main properties are the following:

• the SYNSEM|LOCAL|CONT|RELS of the mother node is the union of the functor’s RELS with a
multi-set with a nominal object in it. In the case of noun ellipsis, because we are not recovering
the antecedent, this relation can be called ellipsis_n_rel, which stands for a relation that has yet
to be determined. For missing-N generics we also assume a relation generic_n_rel, the exten-
sion of which can be assumed to be the set of human beings. A noun phrase like the poor is
thus analyzed as meaning λP.the(x, poor(x)∧generic(x),P(x)), i.e. its restrictor is the intersection
of the set of poor entities with the set of humans. Because we cannot distinguish between the
two constructions in general, the relation that is added is called ellipsis-or-generic_n_rel, which is
intended to underspecify the two. The added relation is useful for the cases where a single de-
terminer makes up the entire NP, since if a relation were not added, there would be no material
in the restrictor of the determiner.9 We encode the added semantics under the feature C-CONT,
where semantics added by specific rules is described.

• Since no handle constraints should be associated with the missing noun, the HCONS feature of
the mother node is simply the HCONS of the daughter.

9Put differently, if determiners have the semantic type 〈〈e,t〉,〈〈e,t〉,t〉〉, they need to combine with two elements of type 〈e,t〉 (unary
predicates). The second is the denotation of the VP in the same sentence, and the first is the semantic representation of the remaining
material in the NP. In the cases where a single determiner makes up the NP, there would be no predicate that could fill the first argument of
the quantifier relation introduced by the determiner if this ellipsis-or-generic_n_rel were not added.

142 CHAPTER 5. NOUN ELLIPSIS AND MISSING NOUN GENERICS

S

C {}

I
{

1 , 2 , 3
}

P
{

1 , 2 , 3
}

�
�

�
�

�
�

�
�

�
��

H
H

H
H

H
H

H
H

H
HH

NP

I
{

1 , 2
}

P
{

1 , 2
}

�
�

��

H
H

HH

N

SL 1

I
{

1
}

P
{}

men

PP

I
{

2
}

P
{

1 , 2
}

�
��

H
HH

P

in

NP

SL 2 hats

I
{

2
}

P
{

1
}

hats

VP

I
{

3
}

P
{

1 , 2 , 3
}

�
�

�
�

�
�

�
�

�
��

H
H

H
H

H
H

H
H

H
HH

V

met

NP

I
{

3
}

P
{

1 , 2 , 3
}

�
�

�
�

�
�

�
�

H
H

H
H

H
H

H
H

N

SL erase_num(clone(1)) ∨ erase_num(clone(2))

I {}

P
{

1 , 2
}

ones

PP

I
{

3
}

P
{

1 , 2 , 3
}

�
��

H
HH

P

in

NP

SL 3 caps

I
{

3
}

P
{

1 , 2
}

caps

Figure 5.5: Example antecedent resolution in a parse tree. C abbreviates CONTEXT-N-ANTECEDENTS, I ab-
breviates INTRODUCED-N-ANTECEDENTS, P abbreviatesPOSSIBLE-N-ANTECEDENTS, SL abbreviates the path
SYNSEM|LOCAL and italicized noun forms abbreviate feature structures of type local. We also omit non-
branching rules responsible for bare NPs, as well as feature structures for verb and prepositions, because of
space.

5.9. MISSING DAUGHTERS IN PHRASE TYPES 143

basic-missing-n-phrase

SYNSEM|LOCAL|CONT

HOOK

[

LTOP 1

INDEX 3

]

RELS A ∪ B

HCONS C ∪ D = C

ARGS

〈

SYNSEM|LOCAL

CAT|HEAD|MARKER|SELECT|LOCAL|CONT|HOOK

[

LTOP 2

INDEX 3

]

CONT

HOOK|LTOP 1

RELS A

HCONS C

〉

C-CONT

RELS B

LBL 2

PRED ellipsis-or-generic_n_rel
ARG0 3

HCONS D {}

Figure 5.6: Semantic constraints of the missing noun schema.

• In general, the INDEX of a nominal projection is the INDEX of the head noun, which is structure-
shared with the ARG0 of the noun’s relation in the lexical entry for the noun. In the absence of
this lexical unit, this unification must be performed here by directly identifying the INDEX of the
mother node with the ARG0 of the ellipsis-or-generic_n_rel relation.

• The functor must be allowed to see the LTOP and the INDEX of the node it selects because they can
be arguments of the relation or relations the functor contributes to the semantics. Since a noun
would equate its LTOP with the LBL feature of its relation and its INDEX with the ARG0 feature
there, these are unified with the LTOP and INDEX under the SELECT attribute of the functor.

• To simplify our presentation, we ignore Kasper’s problem once again (see Section 3.4.2) in this
analysis and, as before for Head-Functor phrases, (1) unify the LTOP of the mother node with the
LTOP of the (non-head) daughter, and (2) assume in what follows that, in the lexicon, intersective
modifiers identify their LTOP with the LTOP of what they select.

5.8.1 Example

We present an example parse for the NP alguns em Lisboa (some in Lisbon), decorated with LTOP and
INDEX features, in Figure 5.7. In that figure, it is assumed that the features SYNSEM|LOCAL|CAT|HEAD|

MARKER|SELECT|LOCAL|CONT|HOOK|LTOP and SYNSEM|LOCAL|CONT|HOOK|LTOP are unified in the lex-
ical entry for the preposition.

The resulting MRS is presented in Figure 5.8.

5.9 Missing Daughters in Phrase Types

In Section 3.4.1 it was stated that the order of the daughters of phrasal constituents is denoted in the
LKB by the order of elements in the list-valued feature ARGS. Furthermore, attributes like HEAD-DTR

144 CHAPTER 5. NOUN ELLIPSIS AND MISSING NOUN GENERICS

[

LTOP 1

INDEX 2

]

�
�

�
�

��

H
H

H
H

HH

[

LTOP 1

INDEX 2

]

alguns
some

[

LTOP 3

INDEX 2

]

SELECT|HOOK

[

LTOP 3

INDEX 2

]

LTOP 3

em Lisboa
in Lisbon

Figure 5.7: Parse for the example NP alguns - em Lisboa (some in Lisbon). Feature paths are abbreviated.

LTOP h7 h
INDEX x6 x

RELS

〈

algum_rel
LBL h7

ARG0 x6

RSTR h9 h
BODY h8 h

,

ellipsis-or-generic_n_rel
LBL h10 h
ARG0 x6

,

em_rel
LBL h10

ARG1 x6

ARG2 x11 x

,

proper_rel
LBL h13 h
ARG0 x11

RSTR h15 h
BODY h14 h

,

named_rel
LBL h16 h
ARG0 x11

CARG Lisboa

〉

HCONS

〈

qeq
HARG h9

LARG h10

,

qeq
HARG h15

LARG h16

〉

Figure 5.8: MRS for the NP alguns - em Lisboa (some in Lisbon).

5.9. MISSING DAUGHTERS IN PHRASE TYPES 145

and NON-HEAD-DTR are merely pointers to these elements, useful when one wants to abstract from
word order.

Nothing requires that these daughter features point to an existing element of ARGS, though. That
is, it is possible to have constructions with the two features, HEAD-DTR and NON-HEAD-DTR, but with
an ARGS list of less than two elements.

This would be a way to model a class of missing syntactic constituents. Assuming that phrases
are binary at most (this is enforced in LXGram and several other computational HPSGs), these con-
structions are prototypically unary, but have semantic or syntactic properties of some other binary
constructions.

The difference between ARGS and daughter features (HEAD-DTR and NON-HEAD-DTR) has no the-
oretical status in HPSG, and the attribute ARGS is specific to the LKB. But we can make a conceptual
distinction between them, and give them a theoretical status. The feature ARGS denotes the realized
daughters of a phrase, whereas the daughter features (like HEAD-DTR and NON-HEAD-DTR) include
them as well as elements that correspond to empty constituents.

There are thus two dimensions: the HEAD-DTR and NON-HEAD-DTR level, which abstracts from the
possibility of non-realized constituents, and the ARGS level, which is more superficial in this respect.
ARGS is also the best place where the Principle of Canonicality can be enforced (all elements of ARGS

are required to have SYNSEMs of type canonical-synsem). Therefore, ARGS can be declared to be of the
generic type list([SYNSEM canonical-synsem]), at least for phrase types (ARGS is also relevant for lexical
rules in the systems considered).

Because the LKB and PET do not support parameterized types, it is necessary to create subtypes
of list: list-of-signs-with-canonical-synsem, cons-of-signs-with-canonical-synsem (a non empty list of such
elements), null-of-signs-with-canonical-synsems (an empty list of such signs). The relevant part of the
type hierarchy is:

cons

list

list-of-signs-with-canonical-synsem

cons-of-signs-with-canonical-synsem

null

null-of-signs-with-canonical-synsem

The type cons-of-signs-with-canonical-synsem constrains the features FIRST (the head of the list) and
REST (its tail), both inherited from cons:

cons-of-signs-with-canonical-synsem
FIRST|SYNSEM canonical-synsem
REST list-of-signs-with-canonical-synsem

Note that the most general type for which the feature SYNSEM is appropriate is sign, so type inference
determines that FIRST is of this type.

The feature ARGS of the type phrase is constrained to be of the type list-of-signs-with-canonical-
synsem. In the subtypes where its size is constrained (it will never be empty), the type for ARGS will
be inferred to be cons-of-signs-with-canonical-synsem, as this type is the most general unifier of list-
of-signs-with-canonical-synsem, a constraint inherited from phrase, and cons, the most general type for
which FIRST and REST are appropriate.

For instance, the constraints defined in the supertype of phrases with two daughters can be very
simple:

146 CHAPTER 5. NOUN ELLIPSIS AND MISSING NOUN GENERICS

basic-binary-phrase

ARGS
〈

top, *top*
〉

Since basic-binary-phrase inherits from phrase, where ARGS is declared to be of the type list-of-signs-
with-canonical-synsem, the full constraints on basic-binary-phrase will be as desired (the definition just
presented is notationally equivalent to the left operand):

basic-binary-phrase

ARGS

cons
FIRST *top*

REST

cons
FIRST *top*
REST null

u

phrase
ARGS list-of-signs-with-canonical-synsem

=

basic-binary-phrase

ARGS

cons-of-signs-with-canonical-synsem

FIRST

sign
SYNSEM canonical-synsem

REST

cons-of-signs-with-canonical-synsem

FIRST

sign
SYNSEM canonical-synsem

REST null-of-signs-with-canonical-synsem

The Principle of Canonicality is then simply a constraint on this feature ARGS in a very general
type (phrase).

The implementation of the missing noun phrases is thus an interesting case to justify these two
levels. It is explained in Section 5.9.1.

In the remainder of this section, we focus on the technical issues that need to be addressed in order
to dissociate ARGS and the daughter features.

In the LinGO Grammar Matrix, the feature NON-HEAD-DTR is declared for the type basic-binary-
headed-phrase, which also constrains its ARGS to have two elements (this constraint is inherited from
the supertype basic-binary-phrase). The attribute HEAD-DTR is in one of its supertypes (headed-phrase).
For the proposed design to work, this has to be changed, since we want to allow HEAD-DTR and
NON-HEAD-DTR to be present also when ARGS is a singleton list.

The attribute NON-HEAD-DTR can be declared in a new type basic-phrase-with-non-head-dtr. This
type serves the only purpose of introducing the feature NON-HEAD-DTR, and accordingly is the super-
type of all phrasal types where this feature is present, no matter what the size of their feature ARGS is.
ARGS is not constrained in basic-phrase-with-non-head-dtr:

basic-phrase-with-non-head-dtr
NON-HEAD-DTR sign

The relevant part of the hierarchy involving these phrase types can be as presented in Figure 5.9.

5.9. MISSING DAUGHTERS IN PHRASE TYPES 147

headed-phrase

phrase

basic-binary-phrase basic-unary-phrase

basic-unary-headed-phrasebasic-phrase-with-non-head-dtr

basic-binary-headed-phrase basic-unary-missing-dtr-phrase head-only

Figure 5.9: Type hierarchy of Head-Functor constructions (version 1/3). Final version on p. 149.

In this figure, the types basic-unary-phrase and basic-binary-phrase constrain the length of ARGS to
be one and two respectively:

basic-unary-phrase

ARGS
〈

top
〉

basic-binary-phrase

ARGS
〈

top, *top*
〉

The type headed-phrase is where HEAD-DTR is introduced. It is the supertype of all headed construc-
tions. It contains these constraints, among others:

headed-phrase
SYNSEM|LOCAL|CAT|HEAD 1

HEAD-DTR

sign
SYNSEM|LOCAL|CAT|HEAD 1

The type basic-phrase-with-non-head-dtr is where the attribute NON-HEAD-DTR is declared. It is the
supertype of basic-binary-headed-phrase, from which all binary and headed constructions inherit, and
also of basic-unary-missing-dtr-phrase, which is the type of construction we are discussing, with a sin-
gleton ARGS but both HEAD-DTR and NON-HEAD-DTR. It introduces no constraints of its own, but it
inherits several constraints from its supertypes:

basic-unary-missing-dtr-phrase

SYNSEM

phrase-synsem
LOCAL|CAT|HEAD 1

HEAD-DTR

sign
SYNSEM|LOCAL|CAT|HEAD 1

NON-HEAD-DTR sign

ARGS

cons-of-signs-with-canonical-synsem

FIRST

sign
SYNSEM canonical-synsem

REST null-of-signs-with-canonical-synsem

148 CHAPTER 5. NOUN ELLIPSIS AND MISSING NOUN GENERICS

headed-phrase

phrase

basic-binary-phrasebasic-unary-phrase

basic-unary-headed-phrase

head-only

basic-phrase-with-non-head-dtr

basic-binary-headed-phrasebasic-unary-missing-dtr-phrase basic-head-functor-phrase

basic-binary-head-functor-phrase head-initialhead-final

head-functor-phrasefunctor-head-phrase

Figure 5.10: Type hierarchy of Head-Functor constructions (version 2/3). Previous version on p. 147. Final
version on p. 149.

We leave open the possibility for headed unary phrases without the NON-HEAD-DTR feature. Their
supertype is head-only.

The basic shape of the hierarchy is like in the LinGO Grammar Matrix. The new types are basic-
phrase-with-non-head-dtr, basic-unary-missing-dtr-phrase and basic-unary-headed-phrase.10

In Section 3.4.1 the types head-initial and head-final were presented. They define the relation be-
tween HEAD-DTR and NON-HEAD-DTR and the elements of ARGS, thus constraining word order be-
tween the daughters of a phrase. The result of incorporating these abstract types, as well as the
functor phrases, into the revised hierarchy for headedness and arity is in Figure 5.10.

The main point is that the type basic-head-functor-phrase, presented in Section 3.4 and the supertype
of all constructions involving a functor daughter, does not inherit from basic-binary-headed-phrase, be-
cause the former can also be a supertype of missing noun constructions (not shown yet). The extra
type basic-binary-head-functor-phrase is a glbtype. It would be created automatically by the system in
order to guarantee a single unifier for basic-head-functor-phrase and basic-binary-headed-phrase (it could
be functor-head-phrase or head-functor-phrase).

5.9.1 HEAD-DTR in Missing Noun Phrases

With the setup of Figure 5.10, the most intuitive place to put missing noun constructions is as a de-
scendant of basic-head-functor-phrase and basic-unary-missing-dtr-phrase. This new type is basic-missing-
n-phrase. The hierarchy for functor phrase types expanded with basic-missing-n-phrase is in Figure 5.11.

10In the LinGO Grammar Matrix, there are some more intermediate types which are ignored here.

5.9.
M

ISSIN
G

DAU
G

H
TERS

IN
PH

RA
SE

TY
PES

149

headed-phrase

phrase

basic-binary-phrasebasic-unary-phrase

basic-unary-headed-phrase

head-only

basic-phrase-with-non-head-dtr

basic-binary-headed-phrasebasic-unary-missing-dtr-phrase basic-head-functor-phrase

binary-head-functor-phrasehead-initial head-final

head-functor-phrase functor-head-phrase

head-missingnon-head-missing

basic-missing-n-phrase

Figure 5.11: Type hierarchy of Head-Functor constructions (final version — 3/3). Previous version on p. 148.

150 CHAPTER 5. NOUN ELLIPSIS AND MISSING NOUN GENERICS

The type basic-missing-n-phrase must be further constrained in that it must be specified which
daughter is realized. We chose to do it in a supertype, head-missing, assuming that there can be other
constructions with this property, which could be defined to also inherit from head-missing:

head-missing
HEAD-DTR|SYNSEM non-canonical-synsem
NON-HEAD-DTR 1

ARGS
〈

1
〉

The attribute SYNSEM of the missing daughter is constrained to be of the type non-canonical-synsem,
in view of the fact that it is not realized.

Its counterpart type, non-head-missing, is also part of the hierarchy in Figure 5.11 and should be
specified to have the expected constraints, namely:

non-head-missing
HEAD-DTR 1

NON-HEAD-DTR|SYNSEM non-canonical-synsem

ARGS
〈

1
〉

The interesting part of this design is that, in order to add noun semantics and constrain the type
of the HEAD and MARKING features (to be noun and n-marking respectively) that the functor feeding
the basic-missing-n-phrase will see under its SELECT feature, one can put this information under the
HEAD-DTR attribute. The basic machinery put in place to percolate syntactic information from the
daughters in headed phrases and Head-Functor schemata fills the appropriate values in the mother
node — it is completely inherited from supertypes. Furthermore, the composition of semantics is
exactly as in regular binary phrases. All that is required is that the supertypes never constrain ARGS,
and use HEAD-DTR and NON-HEAD-DTR instead.

This approach can be taken even further. Since the constraints on the HEAD-DTR feature effectively
consist of the definition of a noun, HEAD-DTR can simply be constrained to be of a type that is a
supertype of lexical items for nouns.

Suppose the most general supertype of lexical types for nouns is noun-sign. The exact constraints
on this type are dependent on the grammar and we do not want to restate them in the syntactic rules
for noun ellipsis. Under the present analysis, noun-sign should include constraints that determine the
SYNSEM|LOCAL|CAT|HEAD feature to be of type noun and the attribute SYNSEM|LOCAL|CAT|MARKING

to be n-marking. Under SYNSEM|LOCAL|CONT, HCONS is empty and RELS includes a single relation
with an ARG0 of type ref-index (the real type name of the variables that show up in MRSs with type
x) structure-shared with HOOK|INDEX and HOOK|LTOP is unified with the LBL of that relation. We also
assume that the feature SUBJ is empty for all nouns and that this is a constraint on noun-sign:

5.9. MISSING DAUGHTERS IN PHRASE TYPES 151

noun-sign

SYNSEM|LOCAL

CAT

HEAD noun
VAL|SUBJ 〈〉

MARKING

n-marking
DEMONSTRATIVE absent
POSSESSIVE absent

CONT

HOOK

LTOP 1

INDEX 2

RELS

LBL 1 handle
ARG0 2 ref-index

HCONS {}

A descendant of noun-sign is covert-noun-sign, representing a noun that has no phonetic realiza-
tion. The type covert-noun-sign has an empty list as the value of its COMPS feature, since we are not
performing antecedent resolution. The semantics specific to noun ellipsis constructions (under the
approach of not resolving the antecedent) and missing-N generics can also be specified here:

covert-noun-sign

SYNSEM

unexpressed-synsem

LOCAL

CAT|VAL|COMPS 〈〉

CONT|RELS

{

[

PRED ellipsis-or-generic_n_rel
]

}

The constraint on the type of its SYNSEM attribute (type unexpressed-synsem) denotes the fact that
this noun is not realized.

This lexical type is not used in lexical entries, since our analysis does not resort to null constituents,
but it can be used in the definition of the constructions with missing nouns. These constructions
specify their head daughter to be a covert-noun-sign:

basic-missing-n-phrase
HEAD-DTR covert-noun-sign

All the properties specific to basic-missing-n-phrase follow immediately from the constraints in-
herited from its supertypes and the constraints on covert-noun-sign, and do not have to be stated as
specific constraints in the basic-missing-n-phrase type. The full constraints of basic-missing-n-phrase —
the ones inherited from supertypes and the ones on covert-noun-sign — are in Figure 5.12. We do not
show the constraints on the NON-LOCAL features, as long distance dependencies fall outside the scope
of this dissertation.

152 CHAPTER 5. NOUN ELLIPSIS AND MISSING NOUN GENERICS

basic-missing-n-phrase

SYNSEM|LOCAL

CAT

HEAD 1 noun

VAL 2

[

SUBJ 〈〉

COMPS 〈〉

]

MARKING 3

CONT

HOOK

[

LTOP 4

INDEX 5

]

RELS A ∪ B ∪ C = A ∪ B

HCONS D ∪ E ∪ F = E

HEAD-DTR

covert-noun-sign

SYNSEM 6

unexpressed-synsem

LOCAL

CAT

HEAD 1

VAL 2

MARKING

n-marking
CARDINAL absent
ORDINAL absent
INDEF-SPEC absent
DEMONSTRATIVE absent
POSSESSIVE absent

CONT

HOOK

[

LTOP 7

INDEX 5

]

RELS A

LBL 7 handle
PRED ellipsis-or-generic_n_rel
ARG0 5 ref-ind

HCONS D {}

NON-HEAD-DTR 8

SYNSEM|LOCAL

CAT

saturated-cat

HEAD|MARKER

[

SELECT 6

MARK 3

]

VAL|COMPS olist
MARKING saturated

CONT

HOOK|LTOP 4

RELS B

HCONS E

ARGS
〈

8
〉

C-CONT

[

RELS C {}

RELS F {}

]

Figure 5.12: General type for missing noun phrases after type expansion. NON-LOCAL features are ignored.

5.9. MISSING DAUGHTERS IN PHRASE TYPES 153

The advantages of this implementation are:

• No ad hoc constraints on missing noun phrases are needed to add noun semantics or to con-
strain the value of the HEAD feature of the mother node or of the SELECT feature of the functor
daughter. The constraints necessary to compose semantics are also inherited from very general
supertypes.

• The constraints common to overt nouns and the missing head are stated in a single place. Fur-
thermore, these constraints basically define what a noun is. This makes it easier to change the
implementation. For instance, changes in the type hierarchy of marking that require changes in
the value of MARKING of nouns do not require changes both in the lexical types of nouns and in
the definition of missing noun phrases.

• The constraints that define what a noun is are encapsulated in the type used to constrain the
HEAD-DTR feature and not directly stated in the type for missing noun phrases.

The main disadvantage is that the feature structures for missing noun phrases will be substantially
larger, since the feature structure for an entire lexical item will be present under HEAD-DTR. Note
however that it does not imply more unification operations at run time, since no node will be unified
with the entire HEAD-DTR attribute, as it is not an element of ARGS.

This approach opens the way for similar analyses to other constructions. In Section 5.9.2 some of
these are briefly mentioned.

5.9.2 Other Constructions with Missing Daughters

Other constructions are good candidates for receiving a similar treatment. One example is bare NPs.
Consider the following example involving a bare NP:

(119) Compraram
they bought

[NP maçãs.
apples

]

They bought apples.

Items that select one NP complement, like the verb in this example, constrain it to be saturated
(see Section 4.3). Therefore the constituent bracketed with NP in (119) cannot be the noun directly:
nouns have the value n-marking for their attribute MARKING, which is incompatible with the type of
MARKING of saturated phrases (saturated). We assume a unary rule that can account for bare NPs. This
rule must produce a node with saturated MARKING and must also add quantifier semantics (udef_q_rel
is the name given in several computational HPSGs for the quantifier relation of bare NPs). It should
contain constraints like the following:

154 CHAPTER 5. NOUN ELLIPSIS AND MISSING NOUN GENERICS

bare-np-phrase

SYNSEM|LOCAL

CAT

HEAD 1 noun
VAL 2

MARKING saturated

CONT

HOOK

LTOP 3

INDEX 4

RELS A ∪ B

HCONS C ∪ D

ARGS

〈

SYNSEM|LOCAL

CAT

HEAD 1

VAL 2

MARKING no-det-marking

CONT

HOOK

LTOP 5

INDEX 4

RELS A

HCONS C

〉

C-CONT

RELS B

LBL 3

PRED udef_q_rel
ARG0 4

RSTR 6

BODY handle

HCONS D

qeq
HARG 6

LARG 5

Missing noun phrases are instances of Functor-Head constructions with the head daughter miss-
ing, where the missing daughter is constrained to be a noun. Bare NPs can be considered Functor-
Head constructions with the functor daughter missing, where the missing daughter is a determiner.
Bare NP constructions would thus inherit from non-head-missing and basic-head-functor-phrase, pre-
sented above.

A solution for bare-NPs similar to the one for missing noun constructions can be envisaged, using
the type hierarchy for lexical types of determiners to factor out the behavior common to overt deter-
miners and the missing daughter of bare NPs. Suppose there is a type determiner-with-semantics-sign
that is a supertype of all lexical types for determiners that carry quantifier semantics (the ones that
appear at NP initial position, not a supertype of the lexical types for the determiners that follow pre-
determiners). This type, determiner-with-semantics-sign, contains the constraints that are common to
realized determiners and the constraints required in bare NP constructions as well. Among these, one
finds quantifier semantics, the constraint on HEAD to be of the type determiner, etc:

5.9. MISSING DAUGHTERS IN PHRASE TYPES 155

determiner-with-semantics-sign

SYNSEM|LOCAL

CAT

HEAD

determiner

MARKER

pre-only-marker-min

SELECT|LOCAL

CAT

HEAD noun
MARKING no-det-marking

CONT|HOOK

LTOP 4

INDEX 2

MARK saturated

VAL

SUBJ 〈〉

COMPS 〈〉

CONT

HOOK|LTOP 1

RELS

LBL 1

ARG0 2

RSTR 3

BODY handle

HCONS

qeq
HARG 3

LARG 4

There would also be a subtype of determiner-with-semantics-sign, covert-determiner-sign, representing a
null determiner:

covert-determiner-sign

SYNSEM

unexpressed-synsem

LOCAL|CONT|RELS

{

[

PRED udef_q_rel
]

}

The constraints on bare NP phrases could thus be very simple, too:

bare-np-phrase
NON-HEAD-DTR covert-determiner-sign

Since bare-np-phrase inherits from non-head-missing and basic-head-functor-phrase, the full constraints
on bare-np-phrase would be as presented in Figure 5.13. Most of the constraints that are necessary
in bare NP phrases are thus inherited from the types that were already defined for Head-Functor
constructions and from the definitions of the lexical types for determiners. We achieve the desired
effect by exploiting the type hierarchy.

It is also interesting to examine if all constructions that involve a non-empty C-CONT feature (where
relations and handle constraints that do not correspond to lexical items but are added by constructions
are stated) could be cast in terms of this architecture, thus effectively making the feature C-CONT

156 CHAPTER 5. NOUN ELLIPSIS AND MISSING NOUN GENERICS

bare-np-phrase

SYNSEM|LOCAL

CAT

HEAD 1 noun
VAL 2

MARKING 3 saturated

CONT

HOOK

[

LTOP 4

INDEX 5

]

RELS A ∪ B ∪ C = A ∪ B

HCONS D ∪ E ∪ F = D ∪ E

HEAD-DTR 6

SYNSEM 7

canonical-synsem

LOCAL

CAT

HEAD 1

VAL 2

MARKING no-det-marking

CONT

HOOK

[

LTOP 8

INDEX 5

]

RELS A

HCONS D

NON-HEAD-DTR

covert-determiner-sign

SYNSEM

unexpressed-synsem

LOCAL

CAT

saturated-cat

HEAD

determiner

MARKER

pre-only-marker-min
SELECT 7

MARK 3

VAL

[

SUBJ 〈〉

COMPS onull

]

MARKING saturated

CONT

HOOK|LTOP 4

RELS B

LBL 4

PRED udef_q_rel
ARG0 5

RSTR 9

BODY handle

HCONS E

qeq
HARG 9

LARG 8

ARGS
〈

6
〉

C-CONT

[

RELS C {}

HCONS F {}

]

Figure 5.13: Full constraints on bare NP phrases

5.10. PREDETERMINERS IN MISSING NOUN CONSTRUCTIONS 157

unnecessary. In our example, the first version of the basic-missing-n-phrase, presented in Section 5.5
and Section 5.8, constrained the C-CONT in order to add the semantics for the missing noun. In the
final version, however, the semantics for the missing noun comes from the HEAD-DTR and is combined
with the semantics of the functor daughter via the constraints for the composition of semantics that are
inherited from basic-head-functor-phrase. We no longer needed C-CONT to contain the semantic relation
that must be added. A similar situation happened with the phrasal type for bare NP constructions. So
our designs dispenses with the attribute C-CONT. We believe that our solution is much more general
than a solution involving C-CONT, since we can factor out many of the commonalities between Head-
Functor constructions and constructions for missing nouns via supertypes.

5.10 Predeterminers in Missing Noun Constructions

The account presented for NPs with a missing head is general enough to accommodate practically all
the NP elements presented in Chapter 4. There is however an exception: the predeterminer todos (all).
This element can appear in noun ellipsis (120a) or missing-N generic constructions (120b).

(120) a. O
the

João
João

comprou
bought

maçãs
apples

e
and

todas
all

estavam
were

podres.
rotten

João bought apples and all (of them) were rotten.

b. Todos
all

são
are

livres.
free

All (people) are free.

When this element appears in NPs with an overt head, a determiner must also be present in the
case of European Portuguese, as reported in Section 4.5. The analysis presented in that section re-
sorted to two lexical entries for this item, one of them common to European and Brazilian Portuguese,
where the presence of a determiner is required, and another specific to Brazilian Portuguese, where it
is not.

For the first entry, a lexical specification was employed in predeterminers according to which they
select for a nominal projection with a value of MARKING subsumed by non-saturated-det-marking. This
constraint makes it incompatible with the missing-N construction developed in the present chapter,
since the daughter of this rule is constrained to be a functor selecting for a constituent that bears the
value n-marking for the attribute MARKING.

The second entry, specific to Brazilian Portuguese, is allowed in the missing noun constructions,
but sentences like the ones in (120) are possible in European Portuguese, too.

Therefore, we would like the less specific item (i.e. the one common to European and Brazilian
Portuguese) to be allowed in this construction, and the one exclusive to Brazilian Portuguese to be
blocked, since that would just multiply parses.

Underspecifying the value of MARKING corresponding to the missing noun (e.g. constraining it
to be simply non-saturated in the type covert-noun-sign) will allow both elements to feed the rules for
the missing nouns. To this end, it is necessary to change the constraints on noun-sign. Namely, the
constraint on the MARKING value (n-marking) should not be stated in noun-sign (if it were, it would
be inherited by covert-noun-sign), but rather in the subtypes of noun-sign that are used in the lexical
entries of nouns. The updated constraints on noun-sign are:

158 CHAPTER 5. NOUN ELLIPSIS AND MISSING NOUN GENERICS

noun-sign

SYNSEM|LOCAL

CAT

HEAD noun
VAL|SUBJ 〈〉

MARKING

non-saturated
CARDINAL absent
ORDINAL absent
INDEF-SPEC absent
DEMONSTRATIVE absent
POSSESSIVE absent

CONT

HOOK

LTOP 1

INDEX 2

RELS

LBL 1 handle
ARG0 2 ref-index

HCONS {}

The lexical types for realized nouns inherit these constraints and their MARKING attribute is further
constrained to be of the type n-marking.

The item exclusive to Brazilian Portuguese can be constrained to select for a constituent with a
synsem of type canonical-synsem. This will prevent it from feeding the rules for missing nouns, since
the HEAD-DTR of these constructions has a SYNSEM of type unexpressed-synsem, that is incompatible
with canonical-synsem.

5.11 Summary

In this chapter we presented the data concerning noun phrases with the head missing and a model of
these data that has been implemented in LXGram.

We began by reporting on the solutions that have been presented in the literature concerning these
noun phrases. These solutions involve the postulation of a noun with no phonetic or orthographic
manifestation.

We proceeded to present an analysis that does not resort to empty categories and can cover the
same data. We modeled these constructions via a special version of the Head-Functor constructions
that were presented in the previous chapters. This special version is a unary phrase whose only
daughter is the functor. It is further constrained in order to allow as valid daughters only the functors
that can attach to a noun. The semantics of a missing noun is also added by this rule to the semantic
representation that is built for the sentence where such noun phrases occur.

Furthermore, the analysis developed in this chapter does not require a large number of specific
stipulations. We took advantage of several levels of abstraction: the concept of functors as an abstrac-
tion over specifiers and adjuncts, ARGS as a separate level of representation from the level of features
like HEAD-DTR and NON-HEAD-DTR, the level of the sign and the level of the synsem, the type hierar-
chy for phrases and the hierarchy of lexical types. With these tools, we can account for the various
peculiarities of these constructions with a very small set of stipulations: most of the information is
inherited from general types or results from very general combinations, like constraining the missing

5.11. SUMMARY 159

daughter of the relevant constructions with a type in the hierarchy of noun lexemes.
We also discussed several limitations faced by a computational treatment of this phenomenon.

They mostly surface due to the difficulty of integrating contextual information, which is still a difficult
task for grammars for the deep linguistic processing of sentences.

160 CHAPTER 5. NOUN ELLIPSIS AND MISSING NOUN GENERICS

6
Conclusions

In this dissertation we presented a formal description of Portuguese NP syntax and semantics imple-
mented in a deep computational grammar for Portuguese. We also considered the case of NPs where
the head noun is not realized.

We used the framework of Head-Driven Phrase Structure Grammar (HPSG) to model these lin-
guistic phenomena. We modeled the syntax of the Portuguese NP, with constraints that describe
the possible word order pattern of the elements internal to the NP and the restrictions on their co-
occurrence. We also described their semantics. To that end, we used Minimal Recursion Semantics
(MRS) as the format of semantic descriptions. MRS allows avoiding some calculations (like deter-
mining the relative scope among the various quantifiers in a logical formula that is determined by a
computational grammar to be the translation of a natural language sentence) that are sometimes not
required for applications.

The system of constraints that was developed to account for these linguistic phenomena was im-
plemented in a computational grammar, LXGram, using the Linguistic Knowledge Builder (LKB), a
platform that includes parsing and generation algorithms and debug tools. LXGram can also be used
with the PET parser, an efficient parser for computational HPSGs. LXGram was implemented using
the set of predefined types in the LinGO Grammar Matrix and expanding upon it. The LinGO Gram-
mar Matrix comes with the core set of the types and the attributes commonly used in HPSG already
defined.

The analyses presented are new and to a large extent cover phenomena for which there are not
many HPSG analyses. As far as we know, there is little HPSG work on the internal syntax of the NP
beyond the work of Abeillé and Godard (1999); Allegranza (1998a,b); Beavers (2003a,b); Nerbonne
et al. (1989); Nerbonne and Mullen (2000); Netter (1996); Van Eynde (2003a,b); Winhart (1997). Also,
other existing computational HPSGs tend to focus on other aspects, like sentence structure and verbal
subcategorization, so a systematic implementation of the phenomena covered is also new. A detailed
and deep computational implementation of the structure of the Portuguese noun phrase is new as
well.

6.1 Summary and Discussion

The system of constraints presented in this dissertation covers a non-trivial subset of NP level phe-
nomena.

In the first two chapters we presented the formalism employed to address the task at hand. We
described the most important properties of this formalism, that resorts to a type system supporting
multiple inheritance, has-a relations between objects, and unification of types and data structures.
We presented the framework used to tackle the problem at hand, HPSG, and some of the types and
attributes that are used in HPSG. We demonstrated the functionality of a computational grammar,
which translates between natural language sentences and logical formulas. The format of semantic
representations used in LXGram, MRS, was also explained.

161

162 CHAPTER 6. CONCLUSIONS

In Chapter 3, we presented a set of features and types that were used in the remaining chapters to
model Portuguese NP syntax and semantics. We resorted to the concept of functor, which merges the
two linguistic concepts of specifier and adjunct, heavily inspired by the work of Allegranza (1998a,b)
and Van Eynde (2003a,b). We presented the implementation of the functors organization in LXGram.
The set of attributes that was used allows describing arbitrary levels of saturation of syntactic con-
stituents (their combinatorial potential with other elements) via a type system. It also allows con-
straining word order possibilities.

In Chapter 4, we modeled the interaction of several NP constituents:

• Determiners and Predeterminers We considered NPs starting with determiners (articles, prenom-
inal demonstratives, etc.) or with elements like todo (all) followed by a determiner:

(121) a. asDET
the

pessoas
people

the people
b. aquelasDET

those
pessoas
people

those people
c. todasPREDET

all
asDET
the

pessoas
people

all (the) people
d. todasPREDET

all
aquelasDET
those

pessoas
people

all those people

We discussed semantic issues (which elements correspond to quantifiers), and controlled word
order between predeterminers and determiners. Our approach was to consider that a subset of
determiners (the ones that can be preceded by a predeterminer) are ambiguous between a ver-
sion carrying quantifier semantics and giving rise to full NPs (the ones that occur at NP-initial
position) and a version carrying no semantics and not producing a full NP immediately (the
ones that occur after a predeterminer). This kind of ambiguity is fully determined by syntactic
context and is not a cause of overgeneration.

• Possessives We noted that possessives can occur before or after the noun in Portuguese, depend-
ing on syntactic context:

(122) a. a
the

minhaPOSS
my

irmã
sister

my sister
b. uma

a
irmã
sister

minhaPOSS
my/mine

a sister of mine

We identified the syntactic contexts responsible for the two word order possibilities and mod-
eled these restrictions accordingly. Our treatment also blocks the presence of more than one
possessive in the same NP. We observed that sometimes possessives express ownership (as in
(123a) below),1 and sometimes their semantic content corresponds to an argument of the rela-
tion denoted by the noun (as in (123b) below, where the relational noun irmã denotes a two-place
predicate relating a person with their sisters):

1It is really not necessarily ownership, but we use this description here as a simplification.

6.1. SUMMARY AND DISCUSSION 163

(123) a. a
the

minhaPOSS
my

bicicleta
bicycle

my bicycle
b. a

the
minhaPOSS
my

irmã
sister

my sister

We implemented a way to account for both kinds of semantics. We analyzed possessives as
ambiguous (denoting ownership or not).

• Cardinal numerals We discussed the semantics of cardinal numbers and their syntax in the pres-
ence vs. absence of material preceding them in the same NP:

(124) a. [NP Os
the

doisCARD
two

carros]
cars

avariaram.
broke down

The two cars broke down.
b. [NP DoisCARD

two
carros]
cars

avariaram.
broke down

Two cars broke down.

Our treatment covers the fact that they can appear in NP-initial position or following a deter-
miner. It does not allow them to occur after indefinite determiners, like algum (some) or to appear
repeated.

In view of the fact that they can co-occur with items that carry quantificational semantics (to-

das aquelas quatro pessoas — all those four people) that is not existential, the classical semantic
treatment mentioned in the literature (Barwise and Cooper, 1981, that associates them with ex-
istential quantification) could not be adopted. When cardinals occur at the beginning of an NP
they must introduce quantifier semantics but in other contexts they do not carry this piece of se-
mantics. Accordingly, we analyzed them as ambiguous elements in this respect, but once again
the semantic content correlates perfectly with the position at which they occur, so this local am-
biguity does not multiply parses. We decomposed the semantics of cardinals in several semantic
relations. We did not resort to multiple lexical entries as a way to treat that kind of ambiguity, as
one of the versions can be produced from the other by monotonically adding information, and
some of the steps in deriving the full semantics are required in both versions.

• Ordinal numerals We observed that in Portuguese word order between cardinals and ordinals
is free after a determiner:

(125) a. os
the

doisCARD
two

primeirosORD
first

capítulos
chapters

the first two chapters
b. os

the
primeirosORD
first

doisCARD
two

capítulos
chapters

the first two chapters

The analysis that was developed accounts for this and the following facts: ordinals cannot be
repeated, even when other elements intervene; they always precede the noun and prenominal
adjectives; they follow determiners and prenominal possessives; they never occur at the begin-
ning of an NP.

164 CHAPTER 6. CONCLUSIONS

• Elements like prenominal certo and determinado (certain) that mark NPs with indefinite specific
readings We discussed and modeled the word order constraints between these elements and the
other prenominal items:

(126) a. Certos
certain

dois
two

carros
cars

avariaram.
broke down

Two certain cars broke down.
b. Dois

two
certos
certain

carros
cars

avariaram.
broke down

Two certain cars broke down.

We concluded that they occupy the same position as cardinals and ordinals with respect to
word order constraints between them and the remaining NP elements. The analysis that was
implemented accounts for this as well as the fact that these elements are not repeatable inside
the same NP.
We also described the implementation of their semantic content in LXGram. Their presence
merely affects scope between the existential quantifier in the NP they belong to and other scope
bearing elements (quantifiers or other elements, like negation), as the following examples illus-
trate:

(127) a. Todos
all

os
the

homens
men

leram
read

um
a

livro.
book

All men read a book.
1. ∃y[book(y)∧∀x[man(x)→ read(x,y)]]

2. ∀x[man(x) →∃y[book(y)∧ read(x,y)]]

b. Todos
all

os
the

homens
men

leram
read

um
a

certo
certain

livro.
book

All men read a certain book.
1. ∃y[book(y)∧∀x[man(x)→ read(x,y)]]

In these examples the first reading corresponds to the case of there being at least one book that
all men have read, whereas the second reading asserts that for all men there is at least one book
that they have read, but it can be a different book for each of them. When the item certo is
present, the first reading is enforced (but note that the second reading is a logical consequence
of the first, so it will be true if the first reading is true; but if the sentence in the second example
is false, we know nothing about the truth value of the second formula).
In this dissertation we explained a way to block unacceptable scope possibilities between quan-
tifiers. However, our approach assumes an extension of the MRS formalism, which is not im-
plemented in the systems in which LXGram runs.

• Adjectives We developed an analysis for adjectival attachment both for prenominal and post-
nominal adjective phrases (APs) that takes into account semantic interactions with other ele-
ments, like relative clauses. In the case of postnominal adjectives, the analysis that was imple-
mented also captured the fact that adjectives following the head noun of an NP can be inter-
spersed with several other NP elements, like PP complements of the noun:

(128) a. a
the

irmã
sister

[AP mais
most

velha]
old

do
of the

Rui
Rui

Rui’s eldest sister

6.1. SUMMARY AND DISCUSSION 165

b. a
the

irmã
sister

do
of the

Rui
Rui

[AP mais
most

velha]
old

Rui’s eldest sister

• PP and AdvP modification of nouns The attachment site of these elements was investigated in the
context of the other NP constituents. An example follows.

(129) uma
a

casa
house

[PP com
with

janelas
windows

azuis]
blue

a house with blue windows

They cluster with elements like postnominal adjectives, PP complements and postnominal demon-
stratives in terms of word order.

The analysis that was implemented allows for the non-multiplication of lexical entries for prepo-
sitions, at the same time accounting for their different behavior when attaching to verbal projec-
tions. In particular, PPs and AdvP can attach to the left or right of VPs in Portuguese, but only
to the right of nouns:

(130) a. * uma
a

[PP com
with

janelas
windows

azuis]
blue

casaN
house

b. Você
you

[VP pode
can

criar
create

um
a

Web site
Web site

completo]
complete

[PP com
with

um
a

Mac.]
Mac

You can create a complete Web site with a Mac.
c. Você

you
[PP com

with
um
a

Mac]
Mac

[VP pode
can

criar
create

um
a

Web site
Web site

completo.]
complete

You can create a complete Web site with a Mac.

The constraints on prepositions and adverbs that we used allow for a single lexical entry for all
the uses of the preposition com (with) in these examples.

• PP complements of nouns We considered PP complements of relational nouns like the following:

(131) a
the

irmã
sister

[PP do
of the

Rui]
Rui

Rui’s sister

We presented a system of constraints that allows several other postnominal constituents to in-
tervene between the head noun and the PP complement in Portuguese or to surface after the PP.
These elements include PP and AdvP adjuncts, postnominal demonstratives and adjectives.

• Relative clause attachment We used semantic considerations to propose that relative clauses
(RCs) attach higher than prenominal adjectives but lower than cardinals and all other prenomi-
nals that precede cardinals, giving rise to structures like the following one:

(132) [NP as
the

[N duas
two

[N grandes
great

guerras]
wars

[RC que
that

abalaram
shook

o
the

mundo]]]
world

the two great wars that shook the world

The implementation of relative clauses and the other NP elements that we described produces
such structures.

166 CHAPTER 6. CONCLUSIONS

• Postnominal demonstratives We also considered postnominal demonstratives (although they are
confined to some dialects of Portuguese), as in this example:

(133) a. o
the

filme
movie

esseDEM
that

that movie

Our analysis predicts that word order is free between postnominal demonstratives and several
other elements, like PP complements, PP and AdvP adjuncts and adjectives.

We provided a precise account of word order phenomena and constituency. Furthermore, co-
occurrence restrictions between elements of these classes were also accounted for. For instance,
prenominal possessives cannot appear in an NP with an indefinite article occupying the determiner
slot, although it is acceptable if this position is filled by a definite article:

(134) a. a
the

minha
my

bicicleta
bicycle

my bicycle
b. * uma

a
minha
my

bicicleta
bicycle

We also described the way that several NP elements combine semantically with other elements.
We used a very general design to account for most of these phenomena (all except complements

of nouns), presented in Chapter 3. This design is very clean, because arguments of predicates in
the semantics are always selected syntactically by the head corresponding to these predicates, either
via the valence features SUBJ and COMPS, where co-occurrence restrictions on a head’s subject and
complements are stated, or via the SELECT feature of functors. The only exception was our treatment
of possessives realizing a noun’s argument, which were implemented as functors selecting for the
noun (instead of the other way around).

In Chapter 5 we focused on NPs lacking an overt head, like these examples (the first one is adapted
from an English one in (Lobeck, 1995)):

(135) a. Provámos
we tasted

muitos
many

vinhos,
wines,

e
and

achei
i thought

que
that

[NP algunsDET
some

] eram
were

extremamente
extremely

secos.
dry

We tasted many wines, and I thought that some were extremely dry.
b. [NP OsDET

the
[AP muito

very
ricos
rich

]] sempre
always

abusaram
abused

d’
of

[NP osDET
the

[AP muito
very

pobres.
poor

]]

The very rich always abused the very poor.

We mentioned their syntactic peculiarities, as reported in the literature. For instance, although in
(135a) a single determiner is present in the highlighted NP, not all determiners can be used in this
context, viz. the definite articles of English and Portuguese cannot form an NP containing no other
visible element.

A typology of phrases was developed that relates missing noun constructions to their counterparts
that display no absent elements, taking advantage of multiple inheritance. We also sketched a very
simple treatment of antecedent resolution, i.e. a method to recover the missing noun from contextual
information, based on syntactic structures. An interesting result is that it does not seem possible in
general to determine a unique possible antecedent without the help of non-grammatical knowledge
(world knowledge seems to be required) — syntax can nevertheless reduce the number of candidates.
Although this simple treatment is not implementable exactly as it was described using the systems
under consideration (LKB and PET), it is nonetheless clearly computationally implementable.

6.2. EVALUATION 167

The approach we followed to handle these NPs lacking a realized noun resorted to dedicated
rules instead of positing an ε production, a nominal lexical entry with the empty string as its surface
form (a null or empty noun). Even in the HPSG literature that is not directly linked to computational
implementations, there is a line of research that seeks to eliminate empty categories altogether. It has
been very successful in the treatment of unbounded dependencies, culminating in the work of Bouma
et al. (2001). The solution developed in Chapter 5 also dispenses with null categories, and is equivalent
to an analysis positing them. Although empty elements were not used, the analysis resorted to the
empty category metaphor and accordingly shows many similarities with approaches employing these
elements. In fact, we ended up defining a type that could be used in the lexical entry for the null noun,
if we used it. This type was then employed in the phrases responsible for producing noun-headed
projections lacking a realized head noun. Essentially, this means that an implementation avoiding
null nouns does not have to be less modular than an implementation employing them: the interaction
between general syntax rules properties and the characteristics specific to the empty noun can still be
separated and factored out, as was done.

The analyses are implemented in a computational grammar for Portuguese currently in develop-
ment at the University of Lisbon. Some of the analyses presented here are more detailed than the
corresponding analyses of other, larger-scale computational HPSGs. As far as we know, no other
DELPH-IN grammar currently contemplates the possibility of possessives realizing arguments of
nouns or prevents multiple ordinal numerals from modifying the same noun, among other things.
Our implementation of quantifier scope restrictions with indefinite specific NPs is also completely
original, and no other computational grammar that we know of restricts the set of possible readings
as much as was done here.

6.2 Evaluation

We present here the results obtained with [incr tsdb()] for a test suite containing NPs with the phe-
nomena covered in this dissertation. The sentences that make up this test suite are presented in
Appendix B. They are based on the examples mentioned throughout this dissertation. This test suite
is composed of 186 items, 149 of which are grammatical examples.

For the experiment reported here, we used the LKB parser on a P4 3GHz machine with 1GB of
RAM. We used several of the parser options concerning efficiency:

• pre-unification filtering (Malouf et al., 2000)
A list of the feature paths most likely to fail unification can be used, so that they can be tried
first and unification failures can be detected early.

• bidirectional parsing (Oepen and Carroll, 2000)
We can specify which daughter of a rule should be unified first, typically the one that is the most
constrained, so that unification failures are detected early.

• active parsing (Oepen and Carroll, 2000)
Dynamic programming techniques are used in order to avoid recomputations — the feature
structures for all phrases that are produced are stored in memory —; with active parsing, feature
structures for active edges — e.g. edges of binary rules where only one of the daughters has been
instantiated — are also stored in memory.

We asked for all solutions (exhaustive search).
The following tables were produced automatically with [incr tsdb()]. They concern coverage, over-

generation and performance:

168 CHAPTER 6. CONCLUSIONS

Coverage Profile

total positive word lexical distinct total overall

Phenomenon items items string items analyses results coverage
]] φ φ φ] %

Total 186 149 5.44 48.47 2.69 149 100.0

(generated by [incr tsdb()] at 15-nov-2007 (16:09 h))

Overgeneration Profile

total negative word lexical distinct total overall

Phenomenon items items string items analyses results coverage
]] φ φ φ] %

Total 186 37 5.95 52.76 0.00 0 0.0

(generated by [incr tsdb()] at 15-nov-2007 (16:10 h))

Performance Profile

Phenomenon
items etasks filter edges first total space

] φ % φ φ (s) φ (s) φ (kb)

Total 1860 729 95.9 214 0.22 0.21 20950

(generated by [incr tsdb()] at 15-nov-2007 (16:10 h))

All the positive examples in this test suite received at least one parse (149 “total results” out of
149 “positive items” in the Coverage table). The average sentence received 2.69 parses (the column
“distinct analyses φ” in the same table). The terminal symbols were highly ambiguous: there were
around 50 possibilities (column “lexical items φ” in the tables Coverage and Overgeneration) for an
average sentence length of 5 or 6 words (columns “word string φ” in the same two tables). None of
the examples marked as ungrammatical was parsable, as desired (0 “total results” out of 37 “negative
items” in the Overgeneration table).

The results in the Performance table are for the same test suite, but with every sentence repeated
10 times (there can be small fluctuations in the performance values between different runs with the
same test suite and the same grammar, so we wanted to approximate the average values for 10 runs).
The average space required to analyze each of these examples was a little over 20MB (“space φ” in
the Performance table). On average, each sentence required 0.21 seconds to be processed (the column
“total φ (s)” in the same table). This value is smaller than the one for obtaining the first reading
(the column “first φ (s)” in the same table), because almost 20% of the examples in this test suite are
ungrammatical and receive no parse.

6.3 Future Work

The analysis developed in this dissertation does not exhaust the topics of NP syntax and semantics.
There are several other elements with particular syntax that are ignored here. For instance, an item
like outro (other) cannot be treated as a regular adjective even when it follows a determiner, because,
unlike adjectives, it can precede cardinals — cf. (29b) and (136) —, and it cannot iterate (137).

(136) Os
the

adeptos
fans

entusiasmaram-se
got excited

depois de
after

[NP outras
other

duas
two

vitórias
victories

do
of the

clube.
club

]

The fans got excited after other two victories of their club.

6.3. FUTURE WORK 169

(137) a. [Os
the

grandes,
great

grandes
great

filmes
films

desse
by that

realizador
director

] eram
were

assim
like that

também
too

The great great films by that director were like that, too.
b. * [NP Os

the
outros
other

outros
other

filmes
filmes

desse
by that

realizador
director

] eram
were

assim
like that

também.
too

It cannot be classified in any of the other categories in the table in Appendix A either, because
it displays behavior different from all of them. We ignore this item outro as well as some other ele-
ments with particular syntax, like cada (each), tal (such). Instead we focused on the classes that were
presented in the table in Appendix A.

We did not say anything about proper names and their combinatorial potential either, as they are
often mentioned in the literature. Similarly, there are other issues that are analyzed in the literature
that we did not discuss here. For instance, prenominal adjectives can surface after the noun when
they are modified or coordinated, as reported and analyzed in (Abeillé and Godard, 1999)): cf. un

grand avantage vs. un avantage plus grand.
Appositive modification was not taken into account, either. It is often assumed that appositive

modifiers occupy a position more peripheral than any of the positions under consideration, so it
should not interact with these data. It is claimed that appositive modifiers are more peripheral than
restrictive modifiers, because appositive modifiers modify entire NPs, whereas restrictive modifiers
are NP internal. For instance, appositive relative clauses can attach to personal pronouns (138b) —
which are assumed to be full NPs —, whereas restrictive relative clauses cannot (138d). Therefore we
consider appositive modifiers to attach to full NPs, unlike all other elements that were discussed in
this dissertation. The bracketing in the following examples reflects such an analysis.

(138) a. Ali
there

podiam
they could

olhar
look

para
at

[NP [NP os
the

barcos,
boats,

] [RelClause
which

que
had

tinham
masts

mastros
green

verdes.]]

There they could look at the boats, which had green masts.
b. Ali

there
podiam
they could

olhar
look

para
at

[NP [NP eles,
them,

] [RelClause
which

que
had

tinham
masts

mastros
green

verdes.]]

There they could look at them, which had green masts.
c. Ali

there
podiam
they could

olhar
look

para
at

[NP os
the

[N [N barcos
boats

] [RelClause que
that

tinham
had

mastros
masts

verdes.
green.

]]] Os
the

outros
other

barcos
boats

tinham
had

mastros
masts

azuis.
blue

There they could look at the boats that had green masts. The other boats had blue masts.
d. * Ali

there
podiam
they could

olhar
look

para
at

eles
them

que
that

tinham
had

mastros
masts

verdes.
green,

Os
the

outros
other

barcos
boats

tinham
had

mastros
masts

azuis.
blue

Our treatment of the semantics of possessives is not exhaustive, as sometimes possessives realize
arguments of adjectives (the following example is adapted from (Partee, 1983)):

(139) o
the

meu
my

filme
movie

favorito
favorite

my favorite movie

An NP like this could receive a representation not very different from the one given to the movie

favored by me.

170 CHAPTER 6. CONCLUSIONS

Also, there are scopal interactions with non-intersective adjectives. For instance, an NP like John’s

former car or his former car can refer to a car that was once John’s or to something that is John’s but
is no longer a car (e.g. it is scrap now): roughly the sole entity in the set FORMER(HIS)∩CAR or in
HIS∩FORMER(CAR). The semantics FORMER(HIS∩CAR) does not capture both possibilities because
the NP can describe scrap that John acquired when it was no longer a car, so it was never “his car”.

Note that the analyses we presented produce HIS∩FORMER(CAR) with prenominal possessives
and FORMER(HIS∩CAR) with postnominal ones, but word order does not seem to have any conse-
quence for the semantics here.

Throughout this text, we mentioned some other phenomena that also fall outside the scope of this
dissertation. We did not contemplate the possibility of extraposed complements of prenominal adjec-
tives (see (19) on p. 49). We ignored the problem of the interaction between scopal and intersective
modifiers and instead chose to present a simplified mechanism for the composition of semantics (see
the discussion in Section 3.4.2). We also chose not to address the composition of semantics with post-
nominal universal quantifiers (see the example in (90) on p. 120). In the section about complements of
nouns, we focused only on nouns that subcategorize for a single PP complement (Section 4.8). There
are many other subcategorization frames for nouns, and we could not cover them all here. The anal-
ysis presented for modifying and argumental possessives overgenerates for expressions like seu pai

(his father), as we do not block the modifier version of this possessive from adjoining to a relational
noun like pai (father): see Section 4.9.1. We also do not allow relative clauses to precede sentential
complements of nouns (example (88) in Section 4.13).

We leave these issues for future work.

Appendices

171

172 APPENDICES

A. POSITIONS WITHIN THE NOUN PHRASE 173

A Positions within the Noun Phrase

I II III IV V VI VII VIII IX
(a) a minha primeira bicicleta com pedais amarelos

the my first bicycle with yellow pedals
my first bicycle with yellow pedals

(b) todas aquelas três mil pessoas ali
all those three thousand people over there

all those three thousand people over there
(c) um certo grande espírito que criou o mundo

a certain great spirit that created the world
a certain great spirit that created the world

(d) a invasão americana do Iraque
the invasion American of the Iraq

the American invasion of Iraq
(e) quatro colegas teus

four collegues of yours
four collegues of yours

(f) a pesca baleeira intensa
the fishing whale-like intense

the intense whale fishing
(g) aquelas suas muitas queixas

those their many complaints
those many complaints of theirs

(h) o papa esse que é tão snob
the pope that who is such a snob

that pope who is such a snob

Positions within the Noun Phrase:

• I — Predeterminers;

• II — Determiners;

• III — Prenominal Possessives;

• IV — Cardinals (b) (e), Ordinals (a), Vague Quantifiers (g), Markers of Indefinite Specifics (c);

• V — Prenominal Adjective Phrases;

• VI — Head Noun;

• VII — Adjectival Arguments;

• VIII — Adjective Phrase Adjuncts (f), Prepositional Phrase Arguments (d), Prepositional Phrase Adjuncts (a), Adverbial
Phrase Adjuncts (b), Postnominal Possessives (e), Postnominal Demonstratives (h);

• IX — Restrictive Relative Clauses.

174 APPENDICES

B. TEST SUITE 175

B Test Suite

Negative (i.e. ungrammatical) examples are preceded by a star (“*”).
1 Eles avariaram.

they broke down
They broke down.

2 Esses carros avariaram.

those cars broke down
Those cars broke down.

3 Os meus carros avariaram.

the my cars broke down
My cars broke down.

4 Aqueles meus dois carros avariaram.

those my two cars broke down
Those two cars of mine broke down.

5 Chegou um falso médico chinês.

arrived a fake doctor Chinese
A fake Chinese doctor arrived.

6 Chegou um falso médico que é chinês.

arrived a fake doctor who is Chinese
A fake doctor who is Chinese arrived.

7 O meu carro está na oficina.

the my car is at the mechanic’s
My car is at the mechanic’s.

8 Todos os homens são mortais.

all the men are mortal
All men are mortal.

9 Chegou a tua encomenda.

has arrived the your order
Your order has arrived.

10 Chegou uma encomenda tua.

has arrived a order your/yours
An order of yours has arrived.

11 Chegaram as duas encomendas.

have arrived the two orders
The two orders have arrived.

176 APPENDICES

12 Chegaram duas encomendas.

have arrived two orders
Two orders have arrived.

13 O primeiro lugar está vago.

the first seat is free
The first seat is free.

14 Todos os homens leram um certo livro.

all the men have read a certain book
All men have read a certain book.

15 Todos os homens batem num pobre burro.

all the men beat up on a poor donkey
All men beat up a poor donkey.

16 Todos os homens batem num burro cinzento.

all the men beat up on a donkey gray
All men beat up a gray donkey.

17 O pai do Rui chegou ontem.

the father of the Rui arrived yesterday
Rui’s father arrived yesterday.

18 Era um cão com três pernas.

it was a dog with three legs
It was a dog with three legs.

19 Os que chegarem primeiro esperam.

the who arrive first wait
The ones who arrive first wait.

20 Não existem com cinco.

not they exist with five
There are none with five.

21 Isso sai com benzina.

that goes away with benzine
That goes away with benzine.

22 Isso com benzina sai.

that with benzine goes away
That goes away with benzine.

23 Era um chapéu com uma antena.

it was a hat with a antenna
It was a hat with an antenna.

B. TEST SUITE 177

24 * Isso era um com uma antena chapéu

that was a with a antenna hat

25 São os quatro naipes.

they are the four suites
It’s the four suites.

26 Muitas espécies de sapos da Amazónia já estão extintas.

many species of frogs of the Amazon Rainforest already are extinct
Many species of frogs of the Amazon Rainforest are already extinct.

27 Bastantes espécies de sapos da Amazónia já estão extintas.

several species of frogs of the Amazon Rainforest already are extinct
Several species of frogs of the Amazon Rainforest are already extinct.

28 As muitas espécies de sapos da Amazónia já estão extintas.

the many species of frogs of the Amazon Rainforest already are extinct
The many species of frogs of the Amazon Rainforest are already extinct.

29 * As bastantes espécies de sapos da Amazónia já estão extintas.

the several species of frogs of the Amazon Rainforest already are extinct

30 Todas as pessoas leram um certo livro.

all the people have read a certain book
All people have read a certain book.

31 Todas as pessoas leram um livro.

all the people have read a book
All people have read a book.

32 Foi a invasão americana do Iraque.

it was the invasion American of the Iraq
It was the American invasion of Iraq.

33 Os primeiros dois filmes passaram aqui.

the first two movies were shown here
The first two movies were shown here.

34 Os dois primeiros filmes passaram aqui.

the two first movies were shown here
The two first movies were shown here.

35 Os adeptos sentiram entusiasmo depois de duas grandes vitórias do clube.

the fans felt enthusiasm after of two great victories of the club
The fans were excited after two great victories of their club.

36 * Os adeptos sentiram entusiasmo depois de grandes duas vitórias do clube.

the fans felt enthusiasm after of great two victories of the club

178 APPENDICES

37 Os seres humanos são livres.

the human beings are free
Human beings are free.

38 Todos os seres humanos são livres.

all the human beings are free
All human beings are free.

39 Todas as pessoas são livres.

all the people are free
All people are free.

40 Todas aquelas pessoas são livres.

all those people are free
All those people are free.

41 Todas pessoas são livres.

all people are free
All people are free.

42 As pessoas todas são livres.

the people all are free
All people are free.

43 Chegou um falso médico chinês.

arrived a fake doctor Chinese
A fake Chinese doctor arrived.

44 Atacaram um mero inspector.

they attacked a mere inspector
They attacked a mere inspector.

45 * Atacaram um inspector mero.

they attacked a inspector mere

46 * Atacaram um japonês inspector.

they attacked a Japanese inspector

47 Atacaram um inspector japonês.

they attacked a inspector Japanese
They attacked a Japanese inspector.

48 Atacaram um falso inspector.

they attacked a fake inspector
They attacked a fake inspector.

49 Atacaram um inspector falso.

they attacked a inspector fake
They attacked a fake inspector.

B. TEST SUITE 179

50 Era um grande, grande filme.

it was a great great movie
It was a great, great movie.

51 Era um filme chato, chato.

it was a movie boring boring
It was a boring, boring movie.

52 Viram a alunagem americana na televisão.

they saw the moon landing American on the television
They saw the American moon landing on television.

53 Viram a invasão americana do Iraque.

they saw the invasion American of the Iraq
They saw the American invasion of Iraq.

54 * Viram a invasão do Iraque americana.

they saw the invasion of the Iraq American

55 Viram a alunagem americana de 1969.

they saw the moon landing American of 1969
They saw the American moon landing of 1969.

56 * Viram a alunagem de 1969 americana.

they saw the moon landing of 1969 American

57 * Viram a invasão americana iraquiana.

they saw the invasion American Iraqi

58 Viram o consumo galopante de petróleo.

they saw the consumption ever increasing of oil
They saw the ever increasing consumption of oil.

59 Viram o consumo de petróleo galopante.

they saw the consumption of oil ever increasing
They saw the ever increasing consumption of oil.

60 Viram o consumo de petróleo que continua a crescer.

they saw the consumption of oil that keeps on growing
They saw the consumption of oil that keeps increasing.

61 A minha bicicleta tem um pneu vermelho.

the my bicycle has a tire red
My bicycle has a red tire.

62 Uma bicicleta minha tem um pneu vermelho.

a bicycle my/mine has a tire red
A bicycle of mine has a red tire.

180 APPENDICES

63 Aquela tua bicicleta tem um pneu vermelho.

that your bicycle has a tire red
That bicycle of yours has a red tire.

64 Aquela bicicleta tua tem um pneu vermelho.

that bicycle your/yours has a tire red
That bicycle of yours has a red tire.

65 Ele é teu irmão?

he is your brother
Is he your brother?

66 As minhas duas bicicletas estão aqui.

the my two bicycles are here
My two bicycles are here.

67 * Minhas as duas bicicletas estão aqui.

my the two bicycles are here

68 * As duas minhas bicicletas estão aqui.

the two my bicycles are here

69 Ele é pianista.

he is pianist
He is a pianist.

70 * Ele viu pianista.

he saw pianist

71 Minha bicicleta tem um pneu vermelho.

my bicycle has a tire red
My bicycle has a red tire.

72 O irmão da Ana está aqui.

the brother of the Ana is here
Ana’s brother is here.

73 O seu irmão está aqui.

the her brother is here
Her brother is here.

74 * O seu seu irmão está aqui.

the her her brother is here

75 Os meus dois irmãos estão aqui.

the my two brothers are here
My two brothers are here.

B. TEST SUITE 181

76 O teu livro está aqui.

the your book is here
Your book is here.

77 Os primeiros dois capítulos são cómicos.

the first two chapters are funny
The first two chapters are funny.

78 Os dois primeiros capítulos são cómicos.

the two first chapters are funny
The two first chapters are funny.

79 Um certo primeiro capítulo é cómico.

a certain first chapter is funny
A certain first chapter is funny.

80 * Um primeiro certo capítulo é cómico.

a first certain chapter is funny

81 Dois certos capítulos são cómicos.

two certain chapters are funny
Two certain chapters are funny.

82 Certos dois capítulos são cómicos.

certain two chapters are funny
Two certain chapters are funny.

83 * Os dois três carros avariaram.

the two three cars broke down

84 * O segundo primeiro lugar está vago.

the second first seat is free

85 Um certo carro avariou.

a certain car broke down
A certain car broke down.

86 Um determinado carro avariou.

a certain car broke down
A certain car broke down.

87 * Um determinado certo carro avariou.

a certain certain car broke down

88 * Os dois primeiros três lugares estão vagos.

the two first three seats are free

89 * Os primeiros dois segundos pratos estão aqui.

the first two second dishes are here

182 APPENDICES

90 * Certos dois certos carros avariaram.

certain two certain cars broke down

91 Os vários participantes passeiam as folhas pela sala.

the several participants walk the paper sheets around the room
The several participants walk the paper sheets around the room.

92 * Os vários vinte participantes estão aqui.

the several twenty participants are here

93 * Os vinte vários participantes estão aqui.

the twenty several participants are here

94 Os vários primeiros lugares estão aqui.

the several first seats are here
The several first seats are here.

95 Os primeiros vários lugares estão aqui.

the first several seats are here
The first several seats are here.

96 Viu vários certos participantes.

he saw several certain participants
He saw certain several participants.

97 Viu certos vários participantes.

he saw certain several participants
He saw certain several participants.

98 * Viu os vários vários participantes.

he saw the several several participants

99 * Viu os vários vinte vários participantes.

he saw the several twenty several participants

100 * Verá os próximos primeiros capítulos.

he wil see the next first chapters

101 * Verá os primeiros próximos capítulos.

he wil see the first next chapters

102 Verá os três próximos capítulos.

he wil see the three next chapters
He’ll see the three next chapters.

103 Verá os próximos três capítulos.

he wil see the next three chapters
He’ll see the next three chapters.

B. TEST SUITE 183

104 Verá os dois melhores capítulos.

he wil see the two best chapters
He’ll see the two best chapters.

105 * Verá os melhores dois capítulos.

he wil see the best two chapters

106 Todas as pessoas leram um certo livro.

all the people have read a certain book
All people have read a certain book.

107 Todas as pessoas leram um livro.

all the people have read a book
All people have read a book.

108 * Todos os determinados homens leram um livro.

all the certain men have read a book

109 * Os determinados homens leram um livro.

the certain men have read a book

110 * Esses determinados homens leram um livro.

those certain men have read a book

111 Todos os filhos da Ana leram um certo livro.

all the children of the Ana have read a certain book
All of Ana’s children have read a certain book.

112 Estão aqui dois certos capítulos.

are here two certain chapters
Two certain chapters are here.

113 Estão aqui certos dois capítulos.

are here certain two chapters
Two certain chapters are here.

114 Está aqui um DVD com dois primeiros episódios dessa série.

is here a DVD with two first episodes of that show
A DVD with two first episodes of that show is here.

115 * Está aqui um DVD com primeiros dois episódios dessa série.

is here a DVD with first two episodes of that show

116 Algumas cartas chegaram.

some letters have arrived
Some letters have arrived.

184 APPENDICES

117 Duas cartas chegaram.

two letters have arrived
Two letters have arrived.

118 João não viu uma mancha no chão.

João not saw a spot on the floor
João didn’t see a spot on the floor.

119 João não viu manchas no chão.

João not saw spots on the floor
João didn’t see spots on the floor.

120 Todas as pessoas leram um livro sobre girafas.

all the people have read a book on giraffes
All people have read a book on giraffes.

121 Todas as pessoas leram livros sobre girafas.

all the people have read books on giraffes
All people have read books on giraffes.

122 Pedro quer encontrar um policial.

Pedro wants to find a police officer
Pedro wants to find a police officer.

123 Pedro quer encontrar policiais.

Pedro wants to find police officers
Pedro wants to find police officers.

124 João não viu duas manchas no chão.

João not saw two spots on the floor
João didn’t see two spots on the floor.

125 O João não viu certa mancha no chão.

the João not saw certain spot on the floor
João didn’t see a certain spot on the floor.

126 Todas as pessoas leram certo livro sobre girafas.

all the people have read certain book on giraffes
All people have read a certain book on giraffes.

127 Pedro quer encontrar certo polícia.

Pedro wants to find certain police officer
Pedro wants to find a certain police officer.

128 Aquele carro ali estava aqui ontem.

that car there was here yesterday
That car over there was here yesterday.

B. TEST SUITE 185

129 * Aquele ali carro estava aqui ontem.

that there car was here yesterday

130 Vi carros sem assentos vermelhos.

I saw cars without seats red
I saw cars with no red seats / I saw red cars with no seats.

131 Vi os dois carros da Ana.

I saw the two cars of the Ana
I saw Ana’s two cars.

132 Saíram com a Ana.

they left with the Ana
They left with Ana.

133 Chegou um falso médico que é Chinês.

has arrived a fake doctor that is Chinese
A fake doctor that is Chinese has arrived.

134 Todos os exactamente três filmes que lá vi eram maus.

all the exactly three movies that there I saw were bad
All the exactly three movies that I saw there were bad.

135 A bicicleta essa é verde.

the bicycle that is green
That bicycle is green.

136 Chegaram várias cartas tuas.

have arrived several letters your/yours
Several letters of yours have arrived.

137 Desapareceram as cartas todas.

have disappeared the letters all
All the letters have disappeared.

138 * Uma bicicleta essa é verde.

a bicycle that is green

139 * Essa bicicleta essa é verde.

that bicycle that is green

140 * Esta bicicleta essa é verde.

this bicycle that is green

141 * A bicicleta essa essa é verde.

the bicycle that that is green

186 APPENDICES

142 Esta bicicleta aqui é verde.

this bicycle here is green
This bicycle over here is green.

143 Essa bicicleta aí é verde.

that bicycle there is green
That bicycle over there is green.

144 Aquela bicicleta ali é verde.

that bicycle there is green
That bicycle over there is green.

145 O carro esse é verde.

the car that is green
That car is green.

146 Esse carro é verde.

that car is green
That car is green.

147 Todos esses carros avariaram.

all those cars broke down
All those cars broke down.

148 Vi a casa azul e a verde.

I saw the house blue and the green
I saw the blue house and the green one.

149 Vi algumas crianças com chapéus e algumas com bonés.

I saw some children with hats and some with caps
I saw some children in hats and some in caps.

150 Vi os pobres.

I saw the poor
I saw the poor / I saw the poor ones.

151 Vi os dois.

I saw the two
I saw the two.

152 Vi os sem abrigo.

I saw the without shelter
I saw the homeless.

153 Os que podem ajudar nunca ajudam.

the who can help never help
The ones who can help never do so.

B. TEST SUITE 187

154 Vi os homens bastante velhos e os especialmente novos.

I saw the men quite old and the specially young
I saw the quite old men and the specially young ones.

155 Vi alguns.

I saw some
I saw some.

156 Vi os seus dois.

I saw the his two
I saw his two.

157 Vi a verde.

I saw the green
I saw the green one.

158 Vi alguns jovens com chapéus.

I saw some young with hats
I saw some young ones in hats/ I saw some young people in hats.

159 Comprei maçãs.

I bought apples
I bought apples.

160 Todas estavam podres.

all were rotten
All were rotten.

161 Todos são livres.

all are free
All are free.

162 As pessoas chegaram.

the people have arrived
The people have arrived.

163 Aquelas pessoas chegaram.

those people have arrived
Those people have arrived.

164 Todas as pessoas chegaram.

all the people have arrived
All the people have arrived.

165 Todas aquelas pessoas chegaram.

all those people have arrived
All those people have arrived.

188 APPENDICES

166 A minha irmã está aqui.

the my sister is here
My sister is here.

167 Uma irmã minha está aqui.

a sister my/mine is here
A sister of mine is here.

168 A minha bicicleta está aqui.

the my bicycle is here
My bicycle is here.

169 Os dois carros avariaram.

the two cars broke down
The two cars broke down.

170 Dois carros avariaram.

two cars broke down
Two cars broke down.

171 Os dois primeiros capítulos estão aqui.

the two first chapters are here
The two first chapters are here.

172 Os primeiros dois capítulos estão aqui.

the first two chapters are here
The first two chapters are here.

173 Certos dois carros avariaram.

certain two cars broke down
Two certain cars broke down.

174 Dois certos carros avariaram.

two certain cars broke down
Two certain cars broke down.

175 Todos os homens leram um livro.

all the men have read a book
All men have read a book.

176 Todos os homens leram um certo livro.

all the men have read a certain book
All men have read a certain book.

177 A irmã mais velha do Rui chegou.

the sister most old of the Rui has arrived
Rui’s eldest sister has arrived.

B. TEST SUITE 189

178 A irmã do Rui mais velha chegou.

the sister of the Rui most old has arrived
Rui’s eldest sister has arrived.

179 Mora numa casa com janelas azuis.

he lives in a house with blue windows
He lives in a house with blue windows.

180 * Mora numa com janelas azuis casa.

he lives in a with blue windows house

181 As duas grandes guerras que abalaram o mundo foram más.

the two great wars that shook the world were bad
The two great wars that shook the world were bad.

182 O filme esse é mau.

the movie that is bad
That movie is bad.

183 A minha bicicleta é azul.

the my bicycle is blue
My bicycle is blue.

184 * Uma minha bicicleta é azul.

a my bicycle is blue

185 Alguns eram extremamente secos.

some were extremely dry
Some were extremely dry.

186 Os muito ricos sempre abusaram dos muito pobres.

the very rich always have abused of the very poor
The very rich have always abused the very poor.

190 APPENDICES

Bibliography

ABEILLÉ, ANNE AND DANIÈLE GODARD, 1999. La Position de l’Adjectif Épithète en Français : le
Poids des Mots. In Recherches linguistiques de Vincennes, volume 28, pages 9–31.

ALLEGRANZA, VALERIO, 1998a. Determination and Quantification. In FRANK VAN EYNDE AND
PAUL SCHMIDT, editors, Linguistic Specifications for Typed Feature Structure Formalisms, pages 281–
314. Office for Official Publications of the European Communities, Luxembourg.

ALLEGRANZA, VALERIO, 1998b. Determiners as Functors: NP Structure in Italian. In SERGIO BALARI
AND LUCA DINI, editors, Romance in Head-driven Phrase Structure Grammar, volume 75 of CSLI
Lecture Notes, pages 55–108. CSLI Publications, Stanford.

ALSHAWI, HIYAN AND RICHARD S. CROUCH, 1992. Monotonic Semantic Interpretation. In Proceed-
ings of the 30th Annual Meeting of the Association for Computational Linguistics (ACL-92), pages 32–39.
Newark, NJ.

ANTÓNIO, BRANCO AND COSTA FRANCISCO, 2007. Self- or Pre-Tuning? Deep Linguistic Processing
of Language Variants. In ACL 2007 Workshop on Deep Linguistic Processing, pages 57–64. Association
for Computational Linguistics, Prague, Czech Republic.

ARNOLD, KEN, JAMES GOSLING AND DAVID HOLMES, 2005. The Java Programming Language.
Addison-Wesley Professional.

BAR-HILLEL, YEHOSHUA, M. PERLES AND E. SHAMIR, 1961. On Formal Properties of Simple Phrase
Structure Grammars. Zeitschrift für Phonetik, Sprachwissenschaft und Kommunikationsforschung,
14:143–172.

BARWISE, JON AND ROBIN COOPER, 1981. Generalized Quantifiers and Natural Language. Linguistics
and Philosophy, 4(1):159–219.

BEAVERS, JOHN, 2003a. Heads and Categories: Finding the Nominal Chimera. Manuscript.

BEAVERS, JOHN, 2003b. More Heads and Less Categories: A New Look at Noun Phrase Structure.
In STEFAN MÜLLER, editor, Proceedings of the HPSG-2003 Conference, Michigan State University, East
Lansing, pages 47–67. CSLI Publications, Stanford.

BENDER, EMILY M., DAN FLICKINGER AND STEPHAN OEPEN, 2002. The Grammar Matrix: An
Open-Source Starter-Kit for the Development of Cross-Linguistically Consistent Broad-Coverage
Precision Grammars. In JOHN CARROLL, NELLEKE OOSTDIJK AND RICHARD SUTCLIFFE, editors,
Procedings of the Workshop on Grammar Engineering and Evaluation at the 19th International Conference
on Computational Linguistics, pages 8–14. Taipei, Taiwan.

191

192 BIBLIOGRAPHY

BOND, FRANCIS, STEPHAN OEPEN, MELANIE SIEGEL, ANN COPESTAKE AND DAN FLICKINGER,
2005. Open Source Machine Translation with DELPH-IN. In Proceedings of the Open-Source Machine
Translation Workshop at the 10th Machine Translation Summit, pages 15–22. Phuket, Thailand.

BOS, JOHAN, 1996. Predicate Logic Unplugged. In Proceedings of the 10th Amsterdam Colloquium, pages
133–143.

BOUMA, GOSSE, ROB MALOUF AND IVAN SAG, 2001. Satisfying Constraints on Extraction and Ad-
junction. Natural Language and Linguistic Theory, 1(19).

BRANCO, ANTÓNIO, 1999. Reference Processing and its Universal Constraints. Ph.D. thesis, Universidade
de Lisboa, Lisbon.

BRANCO, ANTÓNIO, 2002. Binding Machines. Computational Linguistics, 28:1–18.

BRANCO, ANTÓNIO AND FRANCISCO COSTA, 2006. Noun Ellipsis without Empty Categories. In
STEFAN MÜLLER, editor, The Proceedings of the 13th International Conference on Head-Driven Phrase
Structure Grammar, pages 81–101. CSLI Publications, Stanford.

BRANCO, ANTÓNIO AND FRANCISCO COSTA, 2007a. Accommodating Language Variation in Deep
Processing. In TRACY HOLLOWAY KING AND EMILY M. BENDER, editors, Proceedings of the GEAF07
Workshop, pages 67–86. CSLI, Stanford, CA.

BRANCO, ANTÓNIO AND FRANCISCO COSTA, 2007b. Identification and Handling of Dialectal Vari-
ation with a Single Grammar. In PETER DIRIX, INEKE SCHUURMAN, VINCENT VANDEGHINSTE

AND FRANK VAN EYNDE, editors, Proceedings of the 17th Meeting of Computational Linguistics in the
Netherlands (CLIN17), pages 5–19. LOT, Utrecht.

CALLMEIER, ULRICH, 2000. PET — A Platform for Experimentation with Efficient HPSG Processing
Techniques. Natural Language Engineering, 6(1):99–108. (Special Issue on Efficient Processing with
HPSG).

CARPENTER, BOB, 1992. The Logic of Typed Feature Structures. Cambridge Tracts in Theoretical Com-
puter Science 32. Cambridge University Press, Cambridge, Massachusetts, USA.

CARROLL, JOHN, ANN COPESTAKE, DAN FLICKINGER AND VICTOR POZNAŃSKI, 1999. An Efficient
Chart Generator for (Semi-)Lexicalist Grammars. In Proceedings of the 7th European Workshop on
Natural Language Generation (EWNLG’99), pages 86–95. Toulouse.

CARROLL, JOHN AND STEPHAN OEPEN, 2005. High Efficiency Realization for a Wide-Coverage Uni-
fication Grammar. In Proceedings of the Second International Joint Conference on Natural Language
Processing (IJCNLP05). Springer Verlag.

CHIERCHIA, GENNARO AND SALLY MCCONNELL-GINET, 1990. Meaning and Grammar: An Introduc-
tion to Semantics. MIT Press, Cambridge, MA.

CHOMSKY, NOAM, 1957. Syntactic Structures. Mouton, The Hague, The Netherlands.

COPESTAKE, ANN, 2000. Appendix: Definitions of Typed Feature Structures. Natural Language Engi-
neering, 6(1):109–112. (Special Issue on Efficient Processing with HPSG).

COPESTAKE, ANN, 2002. Implementing Typed Feature Structure Grammars. CSLI Publications, Stanford,
California.

BIBLIOGRAPHY 193

COPESTAKE, ANN AND DAN FLICKINGER, 2000. An Open-Source Grammar Development Environ-
ment and Broad-Coverage English Grammar Using HPSG. In Proceedings of the Second conference on
Language Resources and Evaluation (LREC-2000). Athens, Greece.

COPESTAKE, ANN, DAN FLICKINGER, IVAN A. SAG AND CARL POLLARD, 2005. Minimal Recursion
Semantics: An Introduction. Journal of Research on Language and Computation, 3(2–3):281–332.

COVINGTON, MICHAEL A., 1994. Natural Language Processing for Prolog Programmers. Prentice-Hall,
Englewood Cliffs, New Jersey.

DAVIDSON, DONALD, 1980. Essays on Actions and Events. Oxford University Press, New York.

DE SWART, HENRIËTTE, 1998. Introduction to Natural Language Semantics. CSLI Publications, Stanford.

DOWTY, DAVID, ROBERT WALL AND STANLEY PETERS, 1981. Introduction to Montague Semantics. D.
Reidel, Dordrecht.

EGG, MARKUS, ALEXANDER KOLLER AND JOACHIM NIEHREN, 2001. The Constraint Language for
Lambda Structures. Journal of Logic, Language and Information, 10:457–485.

FERREIRA, EDUARDO, JOÃO BALSA AND ANTÓNIO BRANCO, 2007. Combining Rule-based and Sta-
tistical Methods for Named Entity Recognition in Portuguese. In Actas do V Workshop em Tecnologia
da Informação e da Linguagem Humana TIL.

FLICKINGER, DAN, 2000. On Building a More Efficient Grammar by Exploiting Types. Natural Lan-
guage Engineering, 6(1):15–28. (Special Issue on Efficient Processing with HPSG).

GINZBURG, JONATHAN AND IVAN A. SAG, 2000. Interrogative Investigations: the Form, Meaning, and
Use of English Interrogatives. CSLI Publications, Stanford, California.

HANKAMER, JORGE AND IVAN SAG, 1976. Deep and Surface Anaphora. Linguistic Inquiry, 7(3):391–
426.

IONIN, TANIA AND ORA MATUSHANSKY, 2006. The Composition of Complex Cardinals. Journal of
Semantics, 23:315–360.

KAMP, HAND AND UWE REYLE, 1993. From Discourse to Logic: An Introduction to Modeltheoretic Se-
mantics, Formal Logic and Discourse Representation Theory. Kluwer Academic Publishers, Dordrecht,
Germany.

KASPER, ROBERT T., 1996. The Semantics of Recursive Modification. Manuscript.

KIEFER, BERND, HANS-ULRICH KRIEGER, JOHN CARROL AND ROB MALOUF, 1999. A Bag of Useful
Techniques for Efficient and Robust Parsing. In Proceedings of the 37th Meeting of the Association for
Computational Linguistics, pages 473–480. College Park, MD.

KRIEGER, HANS-ULRICH AND ULRICH SCHÄFER, 1994. T DL — A Type Description Language
for Constraint-Based Grammars. In Proceedings of the 15th International Conference on Computational
Linguistics, pages 893–899. Kyoto, Japan.

LOBECK, ANNE, 1995. Ellipsis – Functional Heads, Licensing, and Identification. Oxford University Press,
New York, Oxford.

194 BIBLIOGRAPHY

MALOUF, ROBERT, JOHN CARROL AND ANN COPESTAKE, 2000. Efficient Feature Structure Oper-
ations without Compilation. Natural Language Engineering, 6(1):29–46. (Special Issue on Efficient
Processing with HPSG).

MASULLO, JOSÉ PASCUAL, 1999. Variable vs. Intrinsic Features in Spanish Nominal Ellipsis.

MELNIK, NURIT, 2005. From “hand-written” to Computationally Implemented HPSG Theories. In
STEFAN MÜLLER, editor, The Proceedings of the 12th International Conference on Head-Driven Phrase
Structure Grammar, Department of Informatics, University of Lisbon, pages 311–321. CSLI Publications,
Stanford.

MONTAGUE, RICHARD, 1974. The Proper Treatment of Quantification in Ordinary English. Formal
Philosophy, pages 247–270.

MOXEY, LINDA AND ANTHONY SANFORD, 1987. Quantifiers and Focus. Journal of Semantics, 5:189–
206.

MÜLLER, ANA, 2002. The Semantics of Generic Quantification in Brazilian Portuguese. Probus: Inter-
national Journal of Latin and Romance Linguistics, 14(2):279–298.

MÜLLER, STEFAN, 1996. The Babel-System—An HPSG Prolog Implementation. In Proceedings of the
Fourth International Conference on the Practical Application of Prolog, pages 263–277. London.

MÜLLER, STEFAN AND WALTER KASPER, 2000. HPSG Analysis of German. In WOLFGANG

WAHLSTER, editor, Verbmobil: Foundations of Speech-to-Speech Translation, pages 238–253. Springer-
Verlag, Berlin Heidelberg New York, Artificial Intelligence edition.

MUNN, ALAN AND CRISTINA SCHMITT, 1998. Against the Nominal Mapping Parameter: Bare nouns
in Brazilian Portuguese. In Proceedings of NELS 29, pages 339–353. GLSA, The University of Mas-
sachusetts, Amherst, MA.

MUSKENS, REINHARD, 1995. Order-Independence and Underspecification. In J. GROENENDIJK, edi-
tor, Ellipsis, Underspecification, Events and More in Dynamic Semantics.

NERBONNE, JOHN, MASAYO IIDA AND WILLIAM LADUSAW, 1989. Running on Empty: Null Heads
in Head-Driven Grammar. In JANE FEE AND KATHERINE HUNT, editors, Proceedings of the Eightth
West Coast Conference on Formal Linguistics, volume 8, pages 276–288. CSLI Publications/SLA.

NERBONNE, JOHN AND TONY MULLEN, 2000. Null-Headed Nominals in German and English. In
FRANK VAN EYNDE, INEKE SCHUURMAN AND NESS SCHELKENS, editors, Proc. of Computational
Linguistics in the Netherlands 1998, pages 143–64.

NETTER, KLAUS, 1996. Functional Categories in a an HPSG for German, volume 3 of Saarbrücken Disser-
tations in Computational Linguistics and Language Technology.

OEPEN, STEPHAN, 2001. [incr tsdb()] — Competence and Performance Laboratory. User Manual. Tech-
nical report, Computational Linguistics, Saarland University, Saarbrücken, Germany. In prepara-
tion.

OEPEN, STEPHAN AND JOHN CARROLL, 2000. Parser Engineering and Performance Profiling. Natural
Language Engineering, 6(1):81–98. (Special Issue on Efficient Processing with HPSG).

PARTEE, B., A. TER MEULEN AND R. E. WALL, 1990. Mathematical Methods in Linguistics. Kluwer
Academic Publishers, Dordrecht, Germany.

BIBLIOGRAPHY 195

PARTEE, BARBARA, 1983. Uniformity vs. Versatility: the Genitive, a Case Study. In JOHAN VAN
BENTHEM AND ALICE TER MEULEN, editors, The Handbook of Logic and Language, pages 464–470.
Elsevier, Amsterdam.

PENN, GERALD, 2004. Balancing Clarity and Efficiency in Typed Feature Logic Through Delaying. In
Proceedings of the 42nd Meeting of the Association for Computational Linguistics (ACL’04), Main Volume,
pages 239–246. Barcelona, Spain.

POESIO, MASSIMO, 1994. Ambiguity, Underspecification and Discourse Interpretation. In H. BUNT,
R. A. MUSKENS AND G. RENTIER, editors, Proceedings of the International Workshop on Computational
Semantics, pages 151–160. Tilburg.

POLLARD, CARL AND IVAN SAG, 1994. Head-Driven Phrase Structure Grammar. Chicago University
Press and CSLI Publications.

POLLARD, CARL J. AND IVAN A. SAG, 1987. Information-based Syntax and Semantics, Vol. 1. Number 13
in CSLI Lecture Notes. CSLI Publications, Stanford University. Distributed by University of Chicago
Press.

PULLUM, GEOFFREY K., 1975. People Deletion in English. In Working Papers in Linguistics, volume 14,
pages 95–101. Ohio State University.

REYLE, UWE, 1993. Dealing with Ambiguities by Underspecification: Construction, Representation
and Deduction. Journal of Semantics, 10:123–179.

SAG, IVAN A., 2000. Rules and Exceptions in the English Auxiliary System. Manuscript.

SAG, IVAN A., THOMAS WASOW AND EMILY M. BENDER, 2003. Syntactic Theory – A Formal Introduc-
tion. CSLI Publications, Stanford, California, 2nd edition.

SCHIEBER, S. M., 1993. The Problem of Logical Form Equivalence. Computational Linguistics,
19(1):179–190.

SIEGEL, MELANIE AND EMILY M. BENDER, 2002. Efficient Deep Processing of Japanese. In Proceedings
of the 3rd Workshop on Asian Language Resources and International Standardization. Coling 2002 Post-
Conference Workshop, pages 31–38. Taipei, Taiwan.

TICIO, M. EMMA, 2005. NP-Ellipsis in Spanish. In DAVID EDDINGTON, editor, Selected Proceedings of
the 7th Hispanic Linguistics Symposium. Somerville, MA.

VAN EYNDE, FRANK, 2003a. On the Notion ‘Determiner’. In STEFAN MÜLLER, editor, Proceedings of
the HPSG-2003 Conference, Michigan State University, East Lansing, pages 391–396. CSLI Publications,
Stanford.

VAN EYNDE, FRANK, 2003b. Prenominals in Dutch. In JONG-BOK KIM AND STEPHEN WECHSLER,
editors, The Proceedings of the 9th International Conference on HPSG. CSLI Publications, Stanford Uni-
versity.

WINHART, HEIKE, 1997. Die Nominalphrase in einem HPSG-Fragment des Deutschen. In ERHARD

HINRICHS, WALT DETMAR MEURERS, FRANK RICHTER, MANFRED SAILER AND HEIKE WINHART,
editors, Ein HPSG-Fragment des Deutschen. Teil 1: Theorie, chapter 5, pages 319–384. Universität
Tübingen, Tübingen.

196 BIBLIOGRAPHY

	Contents
	List of Figures
	Introduction
	Overview
	Context
	Subject Matter
	Tools
	Organization of the Dissertation
	Summary

	Background
	Overview
	Head-Driven Phrase Structure Grammar
	Semantic Representations
	Expressiveness
	Composition of Meaning
	Minimal Recursion Semantics

	Strong Lexicalism
	Some Properties of the Formalism in the LKB and PET
	Important Types and Mechanisms Defined in the LinGO Grammar Matrix
	Summary

	Functors
	Overview
	Syntactic Relations in HPSG
	Motivation for Functors

	General Feature Geometry
	Constraints on Head-Functor Phrases
	Word Order in Head-Functor Phrases
	Composition of Semantics in Head-Functor Phrases

	Implementation Details
	Addition of Minimal Types

	Lexical Constraints on Rule Application
	Example
	Comments on the Functor Architecture
	Summary

	NP Syntax and Semantics
	Overview
	Data
	General Constraints
	Determiners
	Example

	Predeterminers
	Modifying Adjectives
	Argumental Adjectives
	Noun Complementation
	Prenominal Possessives
	Possessives as Arguments of Nouns

	Cardinals, Ordinals and Markers of Indefinite Specifics
	Semantics of Markers of Indefinite Specifics

	Cardinals and Markers of Indefinite Specifics as Determiners
	Cardinal Determiners and the Semantics of Cardinals

	PPs and AdvPs
	Relative Clauses
	Postnominal Demonstratives and Possessives
	Postnominal Demonstratives
	Postnominal Possessives

	Summary

	Noun Ellipsis and Missing Noun Generics
	Overview
	Subject Matter
	Data
	Previous Accounts
	A Unary Syntactic Rule
	Example

	Transformation of CFGs with Epsilons
	Antecedent Resolution with Noun Ellipsis
	Data and Generalizations
	Towards an Analysis of Antecedent Resolution of Noun Ellipses

	Semantics
	Example

	Missing Daughters in Phrase Types
	HEAD-DTR in Missing Noun Phrases
	Other Constructions with Missing Daughters

	Predeterminers in Missing Noun Constructions
	Summary

	Conclusions
	Summary and Discussion
	Evaluation
	Future Work

	Appendices
	Positions within the Noun Phrase
	Test Suite

	Bibliography

